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Abstract— We are working on the problem of developing a 

flexible, generic metalearning process that supports 

algorithm selection based on studying the algorithms’ past 

performance behaviors. State of the art machine learning 

systems display limitations in that they require a great deal 

of human supervision to select an effective algorithm with 

corresponding options for a specific domain. Additionally, 

very little guidance is available for algorithm-parameter 

selection and the number of available choices is 

overwhelming. In this paper, we develop a flexible, large-

scale experimental framework for a metacontroller that 

supports explorations through algorithm-parameter space 

and recommend algorithm for a given dataset. First, we aim 

to facilitate an easy to use process to create a search space 

for algorithm selection by automatically exploring some 

possible combinations of algorithms and key parameters. 

Secondly, our goal is to come up with an algorithm 

recommendation by looking at the past behaviors of related 

datasets. Our main contribution is the implemented 

framework itself which is based on the use of a wide variety 

of strategies to automatically generate a search space and 

recommend algorithms for a specific dataset.  We evaluate 

our system with 40 major algorithms on 20 datasets from the 

UCI repository. Each dataset is represented by 25 data 

characteristics. We generate and run 7510 combinations of 

algorithm, parameters and datasets. Our experiments show 

that our framework offers a friendly way of setting up a 

machine learning experiment while providing accurate 

ranking of recommended algorithms based on past 

behaviors. Specifically, 88% of recommended algorithm 

rankings significantly correlated with the true rankings for a 

given dataset. 

 

Keywords: metalearning, experimental study, algorithm 

selection. 

I. INTRODUCTION  

Metalearning is the formal study of the best practices in 

machine learning [4] which enables the selection of 

optimal learning algorithms that best fit the search space 

of any given problem. Algorithm selection based on past 

performance is a very important task in metalearning, as 

shown in Rice’s metalearning model [15]. The problem is 

defined as “For a given problem instance x ∈ P, with 

features f(x) ∈ F, find the selection mapping S(f(x)) into 

algorithm space A, such that the selected algorithm α ∈ A 

maximizes the performance mapping y(α(x)) ∈ Y” [16]. 

This problem is often viewed as a search problem with the 

search space being the sets of machine learning 

algorithms performing with a set of parameters on a 

specific dataset. Users often encounter many algorithms, 

each containing many parameters, which, in turn may 

have many values. This makes the search space intractable 

for a complete search. Also there is very little guidance 

available for algorithm-parameter selection. One 

algorithm can be good for a specific problem but can 

perform poorly on another problem. Without domain 

knowledge, users can easily spend significant amounts of 

time in a suboptimal solution. This argument is also 

supported by the No Free Lunch theorem, as indicated in 

[16] which suggested that we should understand more 

about the datasets and the algorithms in order to choose an 

appropriate algorithm for a specific dataset and the task at 

hand.  

 In this paper, we empirically study the algorithm 

selection problem by developing a flexible metalearning 

framework to assist users in choosing appropriate learning 

algorithms for a specific dataset. The novelty of our 

approach is the design of the framework which allows for 

a wide variety of combinations between learning 

algorithms, their parameters and datasets. This framework 

enables any users to set up the experiments easily and 

automatically explores the algorithm-parameter search 

space to find the most appropriate algorithms. Our generic 

framework is built upon the Weka foundation [8], but is 

not tied to Weka. The framework is completely multi-

threaded and parallelized to support execution on clusters. 

We use this framework to rank and recommend 

algorithms. In our experiment, we evaluated 40 

classification algorithms categorized in six groups based 

on the way the classification is done (for example: using 

tree, rule or probability). Unlike previous algorithm 

recommender systems that focus on providing ranking 

based on uni-criterion evaluation, e.g. accuracy, we take 

both accuracy and running time into consideration while 

producing an algorithm ranking. Twenty datasets from the 

UCI repository [6] are used to assess the robustness of the 

system and in evaluating the recommended algorithm 

rankings. A series of recent studies have been conducted 

with regards to algorithm selection. For example, 112 

datasets and 8 algorithms are used in the study of Ali and 

Smith [1]. However, most of these efforts only consider a 

limited number of classic algorithms, such as Support 

Vector Machine (SVM) and rule-based algorithms, 

whereas in our work, we exploit more classification 

algorithms from six different groups. 

 Each dataset in our testbed is described by 25 data 

characteristics extracted using a tool called DCT [11]. We 

use a leave-one-out strategy for assessing the 
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recommended algorithm ranking. For each dataset in the 

testbed, we compute its similarity with all of the 

remaining datasets using the k-nearest neighbor (kNN) 

algorithm. Then we use the information of the algorithms 

performed on the nearest datasets to form a recommended 

algorithm list. The adjusted ratio of ratios (ARR) measure 

[5] is used to assess each algorithm performance. We 

compute the recommended ranking and the true ranking 

for each dataset, and then calculate the Spearman’s 

correlation over these two ranking values. A true ranking 

of algorithms for a given dataset is the order in terms of 

the performance of each algorithm on the particular 

dataset, where the performance is evaluated via the overall 

ARR measurement. Moreover, we assessed the ranking 

based on the differences in terms of the end user’s 

emphases. For example, machine learning practitioners 

may focus more on accuracy, whereas industry software 

developers may emphasize more on time. The results 

show that for all but one case, the recommended and true 

rankings correlated well with each other. More 

importantly, 88% of the recommended rankings are 

significantly correlated with the true ranking of algorithms 

for a given dataset. 

 This paper is organized as follows: We start out with 

a review on the study of algorithm selection as applied to 

classification problems in Section II. Section III details 

the algorithm and configuration of our framework. The 

experimental setup section then describes our objectives, 

and details of our testbed including datasets, algorithms, 

measures and the procedure. Section V discusses the 

findings from our results. Lastly, we will present our 

conclusion and future work.  

II. RELATED WORK 

The aim of metalearning in general is to assist users in 

selecting the best performance algorithms in an 

appropriate model to solve a specific problem. The main 

research questions are: (i) which features of a dataset 

significantly affect the performance of a learning 

algorithm; and (ii) which algorithms are the most 

appropriate to solve a given problem. Substantive effort 

has been put into extracting meta-features, where the 

objective is to capture certain relationships between the 

measured data characteristics and the performance of the 

algorithms. Among those, StatLog project [12]  is a 

comprehensive empirical study that provided 16 valuable 

meta-features that were widely used by metalearning 

researchers for many years. A number of studies extended 

the range of features by incorporating the structural 

characteristics of models [13] and applying simpler and 

faster learners such as landmarkers [14].  

Regarding the selection of algorithms, one of the 

most comprehensive studies on meta-learning for 

algorithm selection is done by Smith-Miles [16]. Early 

meta-learning approaches such as StatLog, limit 

themselves to suggesting one or a subset of algorithms on 

a given problem. Brazdil et al. [5] extends StatLog by 

applying algorithm ranking rather than choosing the only 

best performance algorithm. The idea is to use a learning 

algorithm such as kNN to identify the similarity between 

datasets in the meta-feature space. Then the ranking of 

each algorithm was calculated based on its performance 

on the neighboring datasets. The adjusted ratio of ratios 

(ARR) which aggregates information concerning accuracy 

and time is used to compute the ranking for each 

algorithm. Another approach that supports multi-criteria 

ranking uses data envelopment analysis (DEA), which 

measures the efficiency by taking the ratio of total outputs 

to total inputs [2].  

In 2004, Lai and Tsai. [10] conducted a study in 

which Naïve Bayes, term frequency inverted document 

frequency (TFIDF), kNN, and SVM are applied on the 

spam e-mail classification problem. It turned out that kNN 

did worst among these algorithms while the combination 

of Naïve Bayes and TFIDF gave better results than either 

alone. This study is of limited interest for metalearning, 

because of its narrow scope.  

Recently, several general-purpose data mining 

packages, e.g. Weka [8], have been developed to assist the 

development of machine learning applications. They 

incorporate user-friendly graphical interface to facilitate 

the set-up, execution and subsequent analysis, but 

generally offer no real decision support to non-expert end-

users. We build our generic framework upon the Weka 

foundation as it is an open source software consisting of 

an extensive collection of machine learning algorithms. 

From this, we further build and evaluate the flexible 

framework using ARR measures with characteristics 

extracted using DCT. Our main contributions are the 

flexibility of our implemented framework and the large 

number of classification algorithms. This framework 

allows us to add a combination of algorithm, parameter, 

dataset easily, automatically generates a search space and 

recommends algorithms for a specific dataset. 

III. FRAMEWORK 

Our framework supports explorations through algorithm-

parameter space. The framework is completely multi-

threaded and parallelized to support execution on clusters. 

The key feature is an interface-based plug-in system 

which allows for easy integration of new algorithms. 

While the system follows most Weka conventions, it is a 

stand-alone system with no dependency on Weka code. 

The main components are shown in Fig. 1.  

 

Figure 1: Architecture of algorithm selection framework. 
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<?xml version="1.0" encoding="utf-8"?> 

<tasks> 

  <task name="My Task List" folds="10" out="results/flashmob_control1_new"> 

    <datasources> 

 <data>anneal.arff</data> 

 <data>arrythmia.arff</data> 

 <data>audiology.arff</data> 

 <data>autos.arff</data> 

 <data>balance-scale.arff</data> 

 <data>breast-cancer.arff</data> 

     </datasources> 

    <!-- Bayes algorithms --> 

    <algorithm value="weka.classifiers.bayes.BayesNet"> 

      <option tag="D"  type="bool" value="true" /> 

      <sub tag="Q” class="weka.classifiers.bayes.net.search.local.SimulatedAnnealing"> 

        <suboption tag="A" value="1" min="1" max="10" step="1" /> 

        <suboption tag="U" min="4" max="20" step="2" /> 

      </sub> 

      <sub tag="Q" value="weka.classifiers.bayes.net.search.local.K2"> 

        <suboption type="INT" tag="P" value="4" min="1" max="10" step="1" /> 

        <suboption tag="S" value="BAYES" /> 

        <suboption tag="S" value="MDL" /> 

        <suboption tag="S" value="AIC" /> 

      </sub> 

      <sub tag="E" value="weka.classifiers.bayes.net.estimate.SimpleEstimator"> 

        <suboption type="REAL" tag="A" value="0.5" min="0.1" max="0.6" step="0.1"/> 

      </sub> 

    </algorithm> 

  </task> 

</tasks> 

This framework takes a configuration file as an input 

in which the description for each task in an experiment is 

included. A task is a learning problem described by a set 

of strategies, the input datasets, and the output result set. 

A strategy is defined as a tuple of a machine learning 

algorithm, a set of parameters and its corresponding 

values. If the set of parameters is ignored, the default 

parameters are used. Each parameter is described by type, 

tag, and values. Type can be numerical data type such as 

integer (denoted as INT), real values (denoted as REAL), 

boolean values (denoted as BOOL), or string. Tag 

represents the real name of the parameters. The values can 

be a single integer, real, boolean, string value or a range 

of values. We support numerical ranges of values by 

allowing the users to specify the lower bound value 

(denoted as min), upper bound value (denoted as max) and 

the step value (denoted as step). The system will 

automatically generate a loop through the values for a 

parameter. This feature distinguishes the framework from 

existing tools such as Experimenter in Weka where the 

users can only change a small set of parameters, as Weka 

does not support parameters with range values inside 

Experimenter. 

Each parameter, in turn, can also be another machine 

learning algorithm which has its own sub-parameters. Fig. 

2 shows an example of the configuration file which uses 

six small datasets from the UCI collection and BayesNet 

algorithm. A dataset is a collection of data organized in a 

certain format such as the ARFF format used by Weka. A 

dataset contains more than one instance in a specific 

domain such as labor, voting, census and so forth. An 

instance is defined as a row in a specific dataset which 

describes an observation of a known event in the past in 

that particular domain. 

We use our own XML format to describe this 

framework with corresponding tags to present task and 

strategy. Even though our XML configuration file format 

is similar to XML format of Predictive Model Markup 

Language [7] (PMML), it gives us the flexibility and 

autonomy of adding any new algorithms into our 

framework without having to depend on PMML. 

We provide a tool to convert a dataset from a non-

Weka format to ARFF format. Our framework also allows 

an easy integration with a non-Weka classifier. We 

provide an interface with six methods to set training 

instances, test instances and run the classifier.  

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2: XML file contains description of learning algorithms. 

 The system is designed to allow for a wide variety of 

search strategies, via a callback interface. This 

architecture supports multiple strategies for algorithm-

parameter space on multi-threaded and multi-processor 

environment. The algorithm-parameter space is extremely 

large in most cases, it is impossible to perform an 

exhaustive search. Therefore, on each learning run 

instance, a callback is made to an evaluator which then 

determines the next algorithm-parameter instance to 

search.   This allows the system to dynamically change the 

strategy in real time as the exploration progresses. In the 

current implementation, a simplistic simulated annealing 

approach is used.  Ideally, a configuration XML file 

provides the range of each parameter in order to limit the 

search space. The range is represented by the values 

which can represent the minimal and maximal values and 

the steps. However, the system will accommodate cases 

where this information is not provided.  The system 

samples several instances in the span of available 

parameters for a particular algorithm and then uses a hill-

climbing approach to refine the search, continuing past the 

best result in order to minimize the chance that a local 

maxima is used.  It is important to realize that this is a 

very simplistic first-cut approach to a search strategy, and 

is not meant to be optimal.  In future work, we plan to 

incorporate a more sophisticated machine learning 

algorithm to guide the search. 

 In the recommendation process, we use two 

approaches to suggest algorithms to the end users. If we 

have prior knowledge of the performance of algorithms on 

a given dataset, then algorithms are ranked by computing 

their overall ARR.  

 

 

 

 

 



ARR [5] is defined as: 
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in  which,     

              (     )  and    

   is the 

running time of algorithm aj on the dataset di. AccD is the 

tradeoff coefficient between time and accuracy of a 

specific algorithm. If the user emphasized more on 

accuracy, the value of AccD is small. If the user 

emphasized more on running time, the value of AccD is 

big. This measure aggregates information concerning 

accuracy and time for each algorithm against another 

algorithm in a specific dataset. The overall ARR for each 

algorithm on a given dataset is computed by taking the 

arithmetic mean of all ARRs of that algorithm against  the 

remaining algorithms.  

 If we need to recommend algorithms for a new 

dataset which we do not have any prior knowledge, we 

will compute its similarity with the remaining datasets 

using the kNN algorithm applied on the data 

characteristics space. More detail is provided in Section 

IV. Although the system provides a recommendation for 

an algorithm-parameter set, extensive detailed output data 

from each run is recorded, supporting complex offline 

analysis or evaluation of output data though conventional 

machine learning algorithms. 

IV. EXPERIMENTAL SETUP 

 The goals of this evaluation are twofold. First, we 

want to test the robustness of our implemented 

framework. Secondly, we assess the ranking of algorithms 

and compare the recommended ranking with the true 

ranking.  We choose the classification problem to study in 

this experiment because this is a popular machine learning 

problem with well-established testbeds, procedure and 

measures.  

A. Testbeds 

We use forty algorithms which are categorized into six 

groups based on the ways a classifier can be constructed. 

These groups are Bayes (probability-based algorithms), 

functions (logic-based algorithms), lazy (distance-based 

algorithms), rule (rule-based algorithms), tree (tree-based 

algorithms) and a miscellaneous group. The list of 

algorithms is presented in Appendix 1. Twenty datasets 

from the UCI [6] repository have been used to evaluate 

the robustness and recommendation ranking of the 

framework. 

 Each dataset is represented by 25 data characteristics 

extracted using DCT tool [11]. These characteristics 

include general measurements such as number of features, 

number of instances; measurements of discriminant 

analysis applicable for numerical attributes such as fract 

and cancor, and information theoretical measurements for 

symbolic attributes such as class entropy, joint entropy. 

The list of datasets and some general characteristics are 

shown in the TABLE I.  For more details, please see [11]. 

 

TABLE I.  DATA CHARACTERISTICS OF TESTBED. 

 We assess each strategy using twelve measures that 

are commonly used to assess machine learning 

algorithms. They are accuracy, running time, true positive, 

true negative, false positive, false negative, precision, 

recall, F-measure, specificity, information score, and root 

mean square error. Accuracy is defined as the ratio 

between the number of correctly classified instances over 

the number of all classified instances. Running time is 

defined as the difference between the ending and starting 

of the classification process. True positive is the number 

of correctly classified positive instances. True negative is 

the number of correctly classified negative instances. 

False negative is the number of incorrectly classified 

negative instances while false positive is the number of 

incorrectly classified positive instances. Precision is the 

ratio between the total number of correctly classified 

Collection Features Symbolic 

Features 

Numerical 

Features 

Instances Classes 

Anneal 39 32 6 898 6 

Arrythmia 280 73 206 452 16 

Audiology 70 69 0 226 24 

Autos 26 10 15 205 7 

Balance-

scale 

5 0 4 625 3 

Breast-

cancer 

10 9 0 286 2 

Car 7 6 0 1728 4 

Cmc 10 7 2 1473 4 

Credit-

rating 

16 9 6 690 2 

Cylinder 40 21 18 540 2 

Diabetes 9 0 8 768 2 

Glass 10 0 9 214 7 

Horse-

Colic 

23 15 7 368 2 

Ionosphere 35 0 34 351 2 

Iris 5 0 4 150 2 

Labor 17 8 8 57 2 

Segment 20 0 19 2310 7 

Sonar 61 0 60 208 2 

Splice 62 61 0 3190 3 

Vote 17 16 0 435 2 



positive instances over the number of instances while 

recall is the ratio between the total number of correctly 

classified instances over the total number of positive 

instances. F-measure is computed as: 

 

          
                  

                
       (2) 

 Specificity is the percentage of negative instances 

that were predicted as negative. Information score is 

defined by [9] represents the prior information that is 

needed to correctly classify instances minus the residual 

information. Finally, root mean square error (RMS) is 

computed as the square root of the mean of the square of 

the differences of the predictions and the actual class of 

all instances.  

B. Procedure 

Our system automatically builds a set of strategies and 

performs classification on a specific dataset. We choose 

10-fold Cross Validation (CV) to evaluate the algorithms, 

as it is a commonly used approach in machine learning for 

evaluating algorithm configuration. Basically, we partition 

the original dataset into 10 sub-sets, one of which is used 

for testing while the remaining nine sub-sets are used for 

training. The CV process is then run ten times and the 

twelve measures described above will be recorded and 

aggregated to produce a single measure for this strategy 

on this dataset. We refer to this step as the learning 

algorithm step. The results from this step contains the 

name of the dataset, name of algorithm, parameters and 

values of corresponding parameters, and the values of 

twelve measures described in subsection A for all 

combinations of the strategies and datasets. In the second 

step, named algorithm selection step, we need to come up 

with a list of recommended algorithms. Specifically, we 

define the true ranking for a dataset di as the ordering of 

algorithms based on their performance collected while 

classifying this dataset.  This true ranking is computed as 

follows: first, the averages of the twelve values for each 

algorithm grouped by algorithm parameters are calculated. 

Then      
    

 is computed and the overall ARR for 

each algorithm is calculated as follows: 

     
  

  
 

 
∑      

      
     (3) 

 

where m is the number of algorithms. The system ranked 

the algorithms by their ARRs in descending order. Since 

     
    

depends on the value of AccD in addition to 

accuracy and running time. This rank is considered as the 

true ranking with a given value of AccD for the dataset di. 

The intuition behind this idea is that given two different 

users with two different preferences in the way they solve 

a learning problem, different lists of algorithms will be 

recommended.  

 If we do not know anything about the performance of 

any algorithms on a given dataset, kNN algorithm is used 

to find the nearest neighbor datasets.  The set of 

algorithms performing well on these sets is used to 

generate the recommended list for the new dataset. We 

evaluate the ability to recommend algorithms by assessing 

the correlation between the true ranking obtained above 

and the recommended ranking. The recommended ranking 

on a specific dataset is computed by aggregating the ARR 

measurements on all the datasets in the nearest neighbor 

set. Basically, for each dataset in the testbed, we compute 

its Euclidean distance to each of the remaining datasets. 

Each dataset is described by 25 data characteristics 

presented earlier in subsection A. Given two datasets 

ap={p1,p2,…,p25} and aq={q1, q2,…,q25}, the Euclidean 

distance between ap and aq is defined as follows: 

        (     )   √∑        
   

          (4) 

Note that these values pi and qi have been normalized. 

Then k datasets with smallest distances are chosen to be 

the nearest neighbors. In this implementation, we choose 

k=3. After the nearest neighbor set is formed, we compute 

the ranking by aggregating the ARR through all of the 

datasets in the nearest neighbor sets and taking averages 

of all available algorithms. The approach is discussed in 

details in [5].  
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       (5) 

 

in which m is the number of algorithms and k is the 

number of datasets in the nearest neighbor set.  

 We compute the true ranking and recommended 

ranking for three values of AccD. Recalling that AccD is 

the value that represents the emphasis the user has on 

either time or accuracy. We choose three values for AccD 

(0.1%, 1% and 10%) as they are used in other experiments 

with ARR [5]. With AccD being 0.1%, it reflects a profile 

of a machine learning practitioner who emphasizes more 

on accuracy while with AccD being 10%, it reflects a 

profile of an industry software developer who emphasizes 

more on running time.  After the true ranking and 

recommended ranking are computed, we use Spearman’s 

correlation to find if the rankings are correlated with each 

other. Since we are more interested in ranking order 

(ordinal scale), Spearman correlation is an appropriate 

choice for analysis. All data analysis is performed using 

SPSS version 9.0 [17].  

V. RESULTS AND DISCUSSION 

The goals of our evaluation are addressed through this 

experiment. First, the robustness and ease of use of our 

framework has been tested with 7510 runs. Each run is the 

execution of a strategy on a dataset on one node of our 

cluster:  Dell Poweredge 2950 with 2 quad core Intel 

Xeon E5420 processors @ 2.50GHz, 16GB Ram, 80GB 

7.2k rpm SATA drive. The input of each run is a tuple 

(algorithm, parameters, dataset). The output of each run is 

the value of the above 12 measures. The outputs of this 

step then serve as inputs to the algorithm selection step, 

after which, an algorithm ranking is produced. This 

ranking is called true ranking for a given dataset for a 

given user profile.  TABLE II shows the real ranking of 

the top 5 of algorithms for each dataset in the testbed. 

 

 

 

 



TABLE II.  TOP 5 ALGORITHMS FOR ALL DATASETS. 

Dataset Top 5 

algorithms for 

accuracy 

emphasized 

users 

(AccD=0.1%) 

Top 5 algorithms 

for neutral users 

(AccD=1%)  

Top 5 algorithms 

for running time 

emphasized users 

(AccD=10%) 

Anneal 

LMT,RandomTr

ee 

NNge,HyperPip

es, JRIP 

NNge, 

RandomTree, 

SMO-PolyKernel, 

RBFNetwork, 

JRIP 

ZeroR, NNge, 

RandomTree, SMO-

PolyKernel, OneR 

Arrythmia ADTree,VotedP

erceptron, 

SPegasos, 

AODE, LBR 

VotedPerceptron, 

ADTree, 

Spegasos, AODE, 

LBR 

ZeroR, 

DecisionStump, 

SimpleLogistic, 

OneR, RandomTree 

Audiology IB1,SMO-

PolyKernel,LM

T, HyperPipes, 

NNge 

ZeroR, IB1, 

OneR, 

DecisionStump, 

ConjunctiveRule 

OneR, IB1, 

DecisionStump, 

ConjunctiveRule, 

RandomTree 

Autos LMT, 

RandomTree, 

NNge, 

HyperPie, JRIP 

NNge, 

RandomTree, 

SMO_PolyKernel

, RBFNetwork, 

JRIP 

ZeroR, NNge, 

RandomTree, SMO-

PolyKernel, OneR 

Balance-

scale 

LMT, FT, 

RandomForest, 

NNge, 

RandomTree 

FT, NNge, LMT, 

SMO-

PolyKernel,IB1 

RBFNetwork, 

NBTree, 

DecisionStump, 

LADTree, 

DecisionTable-

BestFirst 

Breast-

cancer 

IB1, 

RandomForest, 

RandomTree, 

NNge, KStar 

IB1, 

RandomForest, 

NNge, 

RandomTree, 

JRIP 

BFTree,, 

DecisionStump, 

ZeroR, NNge, 

RandomForest 

Car NNge, BFTree, 

SimpleCart, 

LMT, SMO-

PolyKernel 

NNge, IB1, 

RandomTree, 

RBFNetwork, 

BFTree 

IB1, OneR, NNge, 

DecisionStump, 

ZeroR 

Cmc RBFNetwork, 

Logistic, 

RandomForest, 

RandomTree, 

NNge 

RBFNetwork, 

Logistic, 

RandomTree, 

RandomForest, 

IB1 

ZeroR, RBFNetwork, 

Logistic, HyperPiper, 

RandomTree 

Credit-

rating 

RandomForest, 

NNge, IB1, 

RandomTree, 

JRIP 

NNge, 

RandomForest, 

IB1, BFTree, 

RandomTree 

LADTree, BFTree, 

OneR, SMO-

PolyKernel, 

DecisionStump 

 

 

Cylinder 

Logistic, KStar, 

HyperPipes, 

IB1, NNge 

HyperPipes, 

Logistic, NNge, 

KStar, 

RandomTree 

HyperPipes, VFI, 

NaiveBayesUpdateab

le, ZeroR, 

RandomTree 

Diabetes RandomForest, 

NNge, 

RandomTree, 

IB1, BFTree 

RandomForest, 

NNge, 

RandomTree, 

BFTree, REPTree 

BFTree, ADTree, 

REPTree, NNge, 

RandomForest 

Glass IB1, 

RandomForest, 

Logistic, LMT, 

RandomTree 

NNge, IB1, 

SMO_PolyKernel

, RandomTree, 

RBFNetwork 

IB1, NNge, 

DecisionStump, 

ZeroR, OneR 

Horse-Colic Winnow, LBR, 

AODE, 

RandomForest, 

BFTree 

Winnow, LBR, 

AODE, 

SimpleCart, 

RandomForest 

VotePerceptron, 

BFTree, NNge, 

RandomTree, JRIP 

Ionosphere RandomForest, 

NNge, 

RandomTree, 

JRIP, NBTree 

NNge, BFTree, 

RandomTree, 

JRIP, 

RandomForest 

NNge, OneR, 

BFTree, JRIP, 

RandomTree 

Iris NNge, 

RandomTree, 

IB1, LADTree, 

RandomForest 

NNge, BFTree, 

RandomTree, 

JRIP, REPTree 

NNge, OneR, 

BFTree, JRIP, 

RandomTree 

Labor NaiveBayes, 

JRIP, Logistic, 

LMT, 

RBFNetwork 

NaiveBayes, 

JRIP, LMT, 

RBFNetwork, 

NNge 

BFTree, JRIP, 

NaiveBayes, NNge, 

OneR 

Segment HyperPipes, 

SimpleCart, IB1, 

BFTree, NNge 

BFTree, 

SimpleCart, 

HyperPipes, 

NNge, IB1 

 

ZeroR, BFTree, 

SimpleCart, 

HyperPipes, OneR 

 

Sonar 

IB1, 

RandomForest, 

NBTree, JRIP, 

RandomTree 

IB1, 

RandomForest, 

LADTree, 

ADTree, 

RandomTree 

LADTree, ADTree, 

FT, RandomTree, 

ZeroR 

Splice AODE, FT, 

SMO-

PolyKernel, 

NaiveBayesSim

ple, JRIP 

NaiveBayesSimpl

e, VFI, AODE, 

SMO-Kernel, 

RandomForest 

NaiveBayesSimple, 

ZeroR, OneR, 

HyperPipes, 

DecisionStump 

Vote RandomForest, 

NNge, ADTree, 

RandomTree,  

IB1 

RandomForest, 

RandomTree, 

IB1, NNge, 

ADTree 

OneR, 

DecisionStump, 

RandomTree, IB1, 

RandomForest 

 In  TABLE III, we show an example of the accuracy 

and running time (in milliseconds) for the top 5 

algorithms performed on the anneal dataset. With AccD 

value being 10%, the algorithms with shorter running time 

are preferred. Therefore, we can see the algorithms with 

faster average running time such as ZeroR, NNge, 

Random Tree. With value of AccD being 0.1%, the 

algorithms with higher accuracy are preferred. Thus, we 

saw algorithms with faster average running time such as 

LMT in this list.  

TABLE III.  AN EXAMPLE OF RUNNING TIME AND 

ACCURACY TRADEOFF FOR ANNEAL 

DATASET. 

 

 We assess the second goal of our evaluation by 

computing the correlation between true rankings and the 

recommended rankings. The recommended ranking is 

created by aggregating the ranking of all the algorithms 

performed with all the datasets in the nearest neighbor 

sets. The nearest neighbor set for a specific dataset is 

computed by finding k datasets (k=3 in this 

implementation) that have the shortest Euclidean distance 

to that given dataset. TABLE IV shows the datasets and 

their nearest neighbor sets. NN1, NN2, NN3 are the name 

of the datasets in the nearest neighbor for a given dataset 

and distance 1, distance 2, and distance 3 are the 

corresponding Euclidean distance from NN1, NN2, and 

NN3 to the given dataset. 

 We generated the recommended algorithm list for all 

datasets and computed the Spearman’s correlation 

between the true ranking and the recommended ranking of 

algorithms for a specific dataset. The results are shown in 

TABLE V.  

 

 

 

 

Algorithm Accuracy Time Algorithm Accuracy Time

ZeroR 0.327 2 LMT 0.902 1131

NNge 0.887 6 RandomTree 0.884 13

RandomTree 0.884 13 Nnge 0.887 6

SMO-PolyKernel 0.833 13 HyperPipes 0.744 91

OneR 0.553 9 JRIP 0.890 77

AccD=10% (emphasize on running time) AccD=0.1% (emphasize on accuracy)



Dataset NN1 Distance 1NN2 Distance 2 NN3 Distance 3

anneal vote 0.420 labor 0.431 balance-scale 0.432

arrhythmia audiology 0.473 sonar 0.526 cylinder 0.537

audiology autos 0.361 glass 0.456 arrhythmia 0.473

autos vote 0.261 car 0.264 breast-cancer 0.342

breast-cancer diabetes 0.073 ionosphere 0.083 sonar 0.153

car diabetes 0.119 credit-rating 0.151 cylinder 0.162

cmc Ionosphere 0.170 breast-cancer 0.187 diabetes 0.199

credit-rating ionosphere 0.081 sonar 0.112 vote 0.121

cylinder car 0.162 vote 0.171 sonar 0.181

diabetes breast-cancer 0.073 ionosphere 0.083 vote 0.114

glass iris 0.188 balance-scale 0.228 segment 0.229

horse-colic vote 0.090 ionosphere 0.139 labor 0.170

ionosphere labor 0.068 credit-rating 0.081 breast-cancer 0.083

iris ionosphere 0.171 glass 0.188 vote 0.205

labor Ionosphere 0.068 vote 0.088 disbetes 0.127

segment glass 0.229 cmc 0.263 iris 0.302

sonar credit-rating 0.112 breast-cancer 0.153 vote 0.161

splice car 0.277 cmc 0.313 cylinder 0.316

vote labor 0.088 horse-colic 0.090 diabetes 0.114

TABLE IV.  DATASETS AND THEIR NEAREST NEIGHBORS 

 

TABLE V.  SPEARMAN’S CORRELATION BETWEEN 

REAL RANKING AND RECOMMENDED RANKING OF 

ALGORITHMS FOR ALL 20 DATASETS.  

 As we can see, among 60 pairs of algorithm rankings, 

there is only one pair (dataset: arrhythmia, AccD=1%) 

that yields negative correlation. Six more pairs have weak 

correlations (Spearman’s correlation < 0.3, Sig(1-tail) > 

0.05). The remaining fifty three pairs (88%), as 

highlighted in TABLE V, have correlations bigger than 

0.3 (Sig (1-tail) <0.05). More importantly, thirty nine 

pairs (65%) have strong correlation (Spearman’s 

correlation>= 0.5, Sig (1-tail) < 0.05). Notice that the 

distances of the three datasets in the nearest neighbors of 

arrhythmia dataset are bigger than other distances for all 

three values of AccD. That means using the algorithm 

rankings for audiology, sonar and cylinder to predict the 

ranking for arrhythmia may not be precise. 

Additionally, the distance between two dataset 

depends on the set of data characteristics. 

Therefore, the more related the data 

characteristic set is to the algorithm 

performance, the more precise and more 

significant the distance is.  

 In summary, our framework has allowed us 

to set up experiments very easily, especially 

when dealing with parameters having ranges 

of values. More importantly, it produces the 

algorithms rankings related to the true 

ranking for a given dataset. 

VI. CONCLUSION 

We have reported our effort on the 

development of a flexible, generic framework 

that supports algorithm selection based on 

studying the algorithms’ past performance 

behaviors on relevant datasets. In this work, 

we considered all the features of the datasets 

as well as all data characteristics of the 

datasets for determining the relevant datasets. 

Our contributions are two folds. First, the 

framework is very flexible for users to add 

any news algorithms and parameters. 

Additionally, it supports parameters with 

range values.  Secondly, we use the typical 

evaluation procedure in metalearning to 

assess the algorithm rankings. Our results 

show that 88% of the recommended rankings 

correlate with the true rankings. As there is 

very little guidance available for algorithm-

parameter selection, this framework can be 

used to automatically generate the search 

space and suggest the algorithm depending 

the user’s preferences.    

This problem is particularly interesting 

and challenging in both the research and 

validation phases. The development and 

evaluation of this framework is the beginning 

of our quest to explore the combination 

between algorithm selection and feature 

selection in metalearning. There are many 

ways we can extend and improve this 

framework. In this work, we currently use 25 

data characteristics extracted by DCT tool to represent a 

dataset. The problem is that except for the general set of 

characters, some datasets with only numerical features 

may not have the same data characteristics with the 

datasets having only symbolic features. We would like to 

explore other types of data characteristics such as DeCT 

[13] which explore the tree structures of datasets. 

Secondly, we currently use the whole set of features of 

any dataset in our testbed in our learning algorithm.  The 

machine learning community has a long history of work 

on feature selection that can be used to improve the 

process. Next, one direction closely related to 

  AccD=10% AccD=0.1% AccD=1% 

Dataset 

Sprearman's 

correlation 

Sig  

(1-tail) 

Spearman's 

correlation 

Sig  

(1-tail) 

Spearman's 

correlation 

Sig  

(1-tail) 

Anneal 0.457 0.012 0.525 0.004 0.575 0.001 

Arrhythmia 0.208 0.14 0.144 0.224 -0.166 0.19 

Audiology 0.302 0.071 0.314 0.059 0.067 0.373 

Autos 0.446 0.011 0.4 0.021 0.337 0.046 

Balance-scale 0.148 0.231 0.57 0.001 0.504 0.004 

Breast-cancer 0.383 0.018 0.68 <0.001 0.68 <0.001 

Car 0.541 0.001 0.8 <0.001 0.545 0.001 

CMC 0.333 0.045 0.57 0.001 0.5 0.004 

Colic 0.316 0.044 0.745 <0.001 0.618 <0.001 

Credit-rating 0.54 0.001 0.694 <0.001 0.656 <0.001 

Cylinder 0.573 <0.001 0.597 0.001 0.501 0.002 

Diabetes 0.372 0.028 0.784 <0.001 0.805 <0.001 

Glass 0.703 <0.001 0.742 <0.001 0.721 <0.001 

Ionosphere 0.338 0.039 0.829 <0.001 0.639 <0.001 

Iris 0.659 <0.001 0.73 <0.001 0.833 <0.001 

Labor 0.333 0.045 0.477 0.006 0.463 0.008 

Segment 0.742 <0.001 0.743 <0.001 0.761 <0.001 

Sonar 0.516 0.002 0.794 <0.001 0.801 <0.001 

Splice 0.655 <0.001 0.481 0.007 0.375 0.032 

Vote 0.669 <0.001 0.831 <0.001 0.693 <0.001 



metalearning is deep learning [3] which is a prominent 

form of hierarchical machine learning. Deep learning 

utilizes many deep layers of abstract representation, 

inspired by human visual processing capabilities. Deep 

learning may help us discover the semantic meaning 

behind why certain algorithms perform best on some 

testbeds and poorly in others. These two themes (deep 

learning and metalearning) ultimately come down to the 

intentional use of structured signal similarity/intersection 

(A ∩ B) and the unstructured noise dis-

similarity/symmetric difference. As such, we would argue 

for a ‘Relative Network’ of objects and their relationships, 

structured entirely along the above. We would like to 

leverage our selection algorithm work to understand 

deeply why certain algorithms work on certain testbeds 

but poorly on others.  
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Appendix 1 

List of algorithms in the experiments 

Bayes algorithms Lazy algorithms 

AODE IB1 

AODEsr IBk 

NaiveBayes KStar 

NaiveBayesSimple LBR 

NaiveBayesUpdateable LWL 
BayesNet  

Function algorithms Rule algorithms 

Logistic ConfunctiveRule 
MultilayerPerceptron DecisionTable 

RBFNetwork DTNB 

SimpleLogistic JRIP 
SMO NNge 

SPegasos OneR 

VotedPerceptron ZeroR 
Winnow  

Tree algorithms 

ADtree LMT 
BFTree NBTree 

DecisionStump RandomForest 

FT RandomTree 
J48 REPTree 

LADTree SimpleCart 

Misc algorithms 
HyperPipes VFI 

 

 


