
Flexible Algorithm Selection Framework for Large Scale Metalearning

Eugene Santos Jr.
1
, Alex Kilpatrick

1
, Hien Nguyen

2
, Qi Gu

1
, Andy Grooms

1
, Chris Poulin

1

1
Dartmouth College

Thayer School of Engineering.

8000 Cummings Hall

Hanover, NH 03755

{Eugene.Santos.Jr, Qi.Gu,

Chris.Poulin}@Dartmouth.EDU

alex@tacticalinfosys.com , agrooms@sbcglobal.net

2
University of Wisconsin-Whitewater

Dept. of Mathematical and Computer Sciences

800 W. Main Street.

Whitewater, WI 53190

nguyenh@uww.edu

Abstract— We are working on the problem of developing a

flexible, generic metalearning process that supports

algorithm selection based on studying the algorithms’ past

performance behaviors. State of the art machine learning

systems display limitations in that they require a great deal

of human supervision to select an effective algorithm with

corresponding options for a specific domain. Additionally,

very little guidance is available for algorithm-parameter

selection and the number of available choices is

overwhelming. In this paper, we develop a flexible, large-

scale experimental framework for a metacontroller that

supports explorations through algorithm-parameter space

and recommend algorithm for a given dataset. First, we aim

to facilitate an easy to use process to create a search space

for algorithm selection by automatically exploring some

possible combinations of algorithms and key parameters.

Secondly, our goal is to come up with an algorithm

recommendation by looking at the past behaviors of related

datasets. Our main contribution is the implemented

framework itself which is based on the use of a wide variety

of strategies to automatically generate a search space and

recommend algorithms for a specific dataset. We evaluate

our system with 40 major algorithms on 20 datasets from the

UCI repository. Each dataset is represented by 25 data

characteristics. We generate and run 7510 combinations of

algorithm, parameters and datasets. Our experiments show

that our framework offers a friendly way of setting up a

machine learning experiment while providing accurate

ranking of recommended algorithms based on past

behaviors. Specifically, 88% of recommended algorithm

rankings significantly correlated with the true rankings for a

given dataset.

Keywords: metalearning, experimental study, algorithm

selection.

I. INTRODUCTION

Metalearning is the formal study of the best practices in

machine learning [4] which enables the selection of

optimal learning algorithms that best fit the search space

of any given problem. Algorithm selection based on past

performance is a very important task in metalearning, as

shown in Rice’s metalearning model [15]. The problem is

defined as “For a given problem instance x ∈ P, with

features f(x) ∈ F, find the selection mapping S(f(x)) into

algorithm space A, such that the selected algorithm α ∈ A

maximizes the performance mapping y(α(x)) ∈ Y” [16].

This problem is often viewed as a search problem with the

search space being the sets of machine learning

algorithms performing with a set of parameters on a

specific dataset. Users often encounter many algorithms,

each containing many parameters, which, in turn may

have many values. This makes the search space intractable

for a complete search. Also there is very little guidance

available for algorithm-parameter selection. One

algorithm can be good for a specific problem but can

perform poorly on another problem. Without domain

knowledge, users can easily spend significant amounts of

time in a suboptimal solution. This argument is also

supported by the No Free Lunch theorem, as indicated in

[16] which suggested that we should understand more

about the datasets and the algorithms in order to choose an

appropriate algorithm for a specific dataset and the task at

hand.

 In this paper, we empirically study the algorithm

selection problem by developing a flexible metalearning

framework to assist users in choosing appropriate learning

algorithms for a specific dataset. The novelty of our

approach is the design of the framework which allows for

a wide variety of combinations between learning

algorithms, their parameters and datasets. This framework

enables any users to set up the experiments easily and

automatically explores the algorithm-parameter search

space to find the most appropriate algorithms. Our generic

framework is built upon the Weka foundation [8], but is

not tied to Weka. The framework is completely multi-

threaded and parallelized to support execution on clusters.

We use this framework to rank and recommend

algorithms. In our experiment, we evaluated 40

classification algorithms categorized in six groups based

on the way the classification is done (for example: using

tree, rule or probability). Unlike previous algorithm

recommender systems that focus on providing ranking

based on uni-criterion evaluation, e.g. accuracy, we take

both accuracy and running time into consideration while

producing an algorithm ranking. Twenty datasets from the

UCI repository [6] are used to assess the robustness of the

system and in evaluating the recommended algorithm

rankings. A series of recent studies have been conducted

with regards to algorithm selection. For example, 112

datasets and 8 algorithms are used in the study of Ali and

Smith [1]. However, most of these efforts only consider a

limited number of classic algorithms, such as Support

Vector Machine (SVM) and rule-based algorithms,

whereas in our work, we exploit more classification

algorithms from six different groups.

 Each dataset in our testbed is described by 25 data

characteristics extracted using a tool called DCT [11]. We

use a leave-one-out strategy for assessing the

mailto:Eugene.Santos.Jr,%20Qi.Gu,%20Chris.Poulin%7d@Dartmouth.EDU
mailto:Eugene.Santos.Jr,%20Qi.Gu,%20Chris.Poulin%7d@Dartmouth.EDU
mailto:alex@tacticalinfosys.com
mailto:agrooms@sbcglobal.net
mailto:nguyenh@uww.edu

recommended algorithm ranking. For each dataset in the

testbed, we compute its similarity with all of the

remaining datasets using the k-nearest neighbor (kNN)

algorithm. Then we use the information of the algorithms

performed on the nearest datasets to form a recommended

algorithm list. The adjusted ratio of ratios (ARR) measure

[5] is used to assess each algorithm performance. We

compute the recommended ranking and the true ranking

for each dataset, and then calculate the Spearman’s

correlation over these two ranking values. A true ranking

of algorithms for a given dataset is the order in terms of

the performance of each algorithm on the particular

dataset, where the performance is evaluated via the overall

ARR measurement. Moreover, we assessed the ranking

based on the differences in terms of the end user’s

emphases. For example, machine learning practitioners

may focus more on accuracy, whereas industry software

developers may emphasize more on time. The results

show that for all but one case, the recommended and true

rankings correlated well with each other. More

importantly, 88% of the recommended rankings are

significantly correlated with the true ranking of algorithms

for a given dataset.

 This paper is organized as follows: We start out with

a review on the study of algorithm selection as applied to

classification problems in Section II. Section III details

the algorithm and configuration of our framework. The

experimental setup section then describes our objectives,

and details of our testbed including datasets, algorithms,

measures and the procedure. Section V discusses the

findings from our results. Lastly, we will present our

conclusion and future work.

II. RELATED WORK

The aim of metalearning in general is to assist users in

selecting the best performance algorithms in an

appropriate model to solve a specific problem. The main

research questions are: (i) which features of a dataset

significantly affect the performance of a learning

algorithm; and (ii) which algorithms are the most

appropriate to solve a given problem. Substantive effort

has been put into extracting meta-features, where the

objective is to capture certain relationships between the

measured data characteristics and the performance of the

algorithms. Among those, StatLog project [12] is a

comprehensive empirical study that provided 16 valuable

meta-features that were widely used by metalearning

researchers for many years. A number of studies extended

the range of features by incorporating the structural

characteristics of models [13] and applying simpler and

faster learners such as landmarkers [14].

Regarding the selection of algorithms, one of the

most comprehensive studies on meta-learning for

algorithm selection is done by Smith-Miles [16]. Early

meta-learning approaches such as StatLog, limit

themselves to suggesting one or a subset of algorithms on

a given problem. Brazdil et al. [5] extends StatLog by

applying algorithm ranking rather than choosing the only

best performance algorithm. The idea is to use a learning

algorithm such as kNN to identify the similarity between

datasets in the meta-feature space. Then the ranking of

each algorithm was calculated based on its performance

on the neighboring datasets. The adjusted ratio of ratios

(ARR) which aggregates information concerning accuracy

and time is used to compute the ranking for each

algorithm. Another approach that supports multi-criteria

ranking uses data envelopment analysis (DEA), which

measures the efficiency by taking the ratio of total outputs

to total inputs [2].

In 2004, Lai and Tsai. [10] conducted a study in

which Naïve Bayes, term frequency inverted document

frequency (TFIDF), kNN, and SVM are applied on the

spam e-mail classification problem. It turned out that kNN

did worst among these algorithms while the combination

of Naïve Bayes and TFIDF gave better results than either

alone. This study is of limited interest for metalearning,

because of its narrow scope.

Recently, several general-purpose data mining

packages, e.g. Weka [8], have been developed to assist the

development of machine learning applications. They

incorporate user-friendly graphical interface to facilitate

the set-up, execution and subsequent analysis, but

generally offer no real decision support to non-expert end-

users. We build our generic framework upon the Weka

foundation as it is an open source software consisting of

an extensive collection of machine learning algorithms.

From this, we further build and evaluate the flexible

framework using ARR measures with characteristics

extracted using DCT. Our main contributions are the

flexibility of our implemented framework and the large

number of classification algorithms. This framework

allows us to add a combination of algorithm, parameter,

dataset easily, automatically generates a search space and

recommends algorithms for a specific dataset.

III. FRAMEWORK

Our framework supports explorations through algorithm-

parameter space. The framework is completely multi-

threaded and parallelized to support execution on clusters.

The key feature is an interface-based plug-in system

which allows for easy integration of new algorithms.

While the system follows most Weka conventions, it is a

stand-alone system with no dependency on Weka code.

The main components are shown in Fig. 1.

Figure 1: Architecture of algorithm selection framework.

Configuration

File

Strategy

Exp.1

Exp. 2

Exp. N

Analyzer

Recommendation

<?xml version="1.0" encoding="utf-8"?>

<tasks>

 <task name="My Task List" folds="10" out="results/flashmob_control1_new">

 <datasources>

 <data>anneal.arff</data>

 <data>arrythmia.arff</data>

 <data>audiology.arff</data>

 <data>autos.arff</data>

 <data>balance-scale.arff</data>

 <data>breast-cancer.arff</data>

 </datasources>

 <!-- Bayes algorithms -->

 <algorithm value="weka.classifiers.bayes.BayesNet">

 <option tag="D" type="bool" value="true" />

 <sub tag="Q” class="weka.classifiers.bayes.net.search.local.SimulatedAnnealing">

 <suboption tag="A" value="1" min="1" max="10" step="1" />

 <suboption tag="U" min="4" max="20" step="2" />

 </sub>

 <sub tag="Q" value="weka.classifiers.bayes.net.search.local.K2">

 <suboption type="INT" tag="P" value="4" min="1" max="10" step="1" />

 <suboption tag="S" value="BAYES" />

 <suboption tag="S" value="MDL" />

 <suboption tag="S" value="AIC" />

 </sub>

 <sub tag="E" value="weka.classifiers.bayes.net.estimate.SimpleEstimator">

 <suboption type="REAL" tag="A" value="0.5" min="0.1" max="0.6" step="0.1"/>

 </sub>

 </algorithm>

 </task>

</tasks>

This framework takes a configuration file as an input

in which the description for each task in an experiment is

included. A task is a learning problem described by a set

of strategies, the input datasets, and the output result set.

A strategy is defined as a tuple of a machine learning

algorithm, a set of parameters and its corresponding

values. If the set of parameters is ignored, the default

parameters are used. Each parameter is described by type,

tag, and values. Type can be numerical data type such as

integer (denoted as INT), real values (denoted as REAL),

boolean values (denoted as BOOL), or string. Tag

represents the real name of the parameters. The values can

be a single integer, real, boolean, string value or a range

of values. We support numerical ranges of values by

allowing the users to specify the lower bound value

(denoted as min), upper bound value (denoted as max) and

the step value (denoted as step). The system will

automatically generate a loop through the values for a

parameter. This feature distinguishes the framework from

existing tools such as Experimenter in Weka where the

users can only change a small set of parameters, as Weka

does not support parameters with range values inside

Experimenter.

Each parameter, in turn, can also be another machine

learning algorithm which has its own sub-parameters. Fig.

2 shows an example of the configuration file which uses

six small datasets from the UCI collection and BayesNet

algorithm. A dataset is a collection of data organized in a

certain format such as the ARFF format used by Weka. A

dataset contains more than one instance in a specific

domain such as labor, voting, census and so forth. An

instance is defined as a row in a specific dataset which

describes an observation of a known event in the past in

that particular domain.

We use our own XML format to describe this

framework with corresponding tags to present task and

strategy. Even though our XML configuration file format

is similar to XML format of Predictive Model Markup

Language [7] (PMML), it gives us the flexibility and

autonomy of adding any new algorithms into our

framework without having to depend on PMML.

We provide a tool to convert a dataset from a non-

Weka format to ARFF format. Our framework also allows

an easy integration with a non-Weka classifier. We

provide an interface with six methods to set training

instances, test instances and run the classifier.

Figure 2: XML file contains description of learning algorithms.

 The system is designed to allow for a wide variety of

search strategies, via a callback interface. This

architecture supports multiple strategies for algorithm-

parameter space on multi-threaded and multi-processor

environment. The algorithm-parameter space is extremely

large in most cases, it is impossible to perform an

exhaustive search. Therefore, on each learning run

instance, a callback is made to an evaluator which then

determines the next algorithm-parameter instance to

search. This allows the system to dynamically change the

strategy in real time as the exploration progresses. In the

current implementation, a simplistic simulated annealing

approach is used. Ideally, a configuration XML file

provides the range of each parameter in order to limit the

search space. The range is represented by the values

which can represent the minimal and maximal values and

the steps. However, the system will accommodate cases

where this information is not provided. The system

samples several instances in the span of available

parameters for a particular algorithm and then uses a hill-

climbing approach to refine the search, continuing past the

best result in order to minimize the chance that a local

maxima is used. It is important to realize that this is a

very simplistic first-cut approach to a search strategy, and

is not meant to be optimal. In future work, we plan to

incorporate a more sophisticated machine learning

algorithm to guide the search.

 In the recommendation process, we use two

approaches to suggest algorithms to the end users. If we

have prior knowledge of the performance of algorithms on

a given dataset, then algorithms are ranked by computing

their overall ARR.

ARR [5] is defined as:

)

in which,

 () and

 is the

running time of algorithm aj on the dataset di. AccD is the

tradeoff coefficient between time and accuracy of a

specific algorithm. If the user emphasized more on

accuracy, the value of AccD is small. If the user

emphasized more on running time, the value of AccD is

big. This measure aggregates information concerning

accuracy and time for each algorithm against another

algorithm in a specific dataset. The overall ARR for each

algorithm on a given dataset is computed by taking the

arithmetic mean of all ARRs of that algorithm against the

remaining algorithms.

 If we need to recommend algorithms for a new

dataset which we do not have any prior knowledge, we

will compute its similarity with the remaining datasets

using the kNN algorithm applied on the data

characteristics space. More detail is provided in Section

IV. Although the system provides a recommendation for

an algorithm-parameter set, extensive detailed output data

from each run is recorded, supporting complex offline

analysis or evaluation of output data though conventional

machine learning algorithms.

IV. EXPERIMENTAL SETUP

 The goals of this evaluation are twofold. First, we

want to test the robustness of our implemented

framework. Secondly, we assess the ranking of algorithms

and compare the recommended ranking with the true

ranking. We choose the classification problem to study in

this experiment because this is a popular machine learning

problem with well-established testbeds, procedure and

measures.

A. Testbeds

We use forty algorithms which are categorized into six

groups based on the ways a classifier can be constructed.

These groups are Bayes (probability-based algorithms),

functions (logic-based algorithms), lazy (distance-based

algorithms), rule (rule-based algorithms), tree (tree-based

algorithms) and a miscellaneous group. The list of

algorithms is presented in Appendix 1. Twenty datasets

from the UCI [6] repository have been used to evaluate

the robustness and recommendation ranking of the

framework.

 Each dataset is represented by 25 data characteristics

extracted using DCT tool [11]. These characteristics

include general measurements such as number of features,

number of instances; measurements of discriminant

analysis applicable for numerical attributes such as fract

and cancor, and information theoretical measurements for

symbolic attributes such as class entropy, joint entropy.

The list of datasets and some general characteristics are

shown in the TABLE I. For more details, please see [11].

TABLE I. DATA CHARACTERISTICS OF TESTBED.

 We assess each strategy using twelve measures that

are commonly used to assess machine learning

algorithms. They are accuracy, running time, true positive,

true negative, false positive, false negative, precision,

recall, F-measure, specificity, information score, and root

mean square error. Accuracy is defined as the ratio

between the number of correctly classified instances over

the number of all classified instances. Running time is

defined as the difference between the ending and starting

of the classification process. True positive is the number

of correctly classified positive instances. True negative is

the number of correctly classified negative instances.

False negative is the number of incorrectly classified

negative instances while false positive is the number of

incorrectly classified positive instances. Precision is the

ratio between the total number of correctly classified

Collection Features Symbolic

Features

Numerical

Features

Instances Classes

Anneal 39 32 6 898 6

Arrythmia 280 73 206 452 16

Audiology 70 69 0 226 24

Autos 26 10 15 205 7

Balance-

scale

5 0 4 625 3

Breast-

cancer

10 9 0 286 2

Car 7 6 0 1728 4

Cmc 10 7 2 1473 4

Credit-

rating

16 9 6 690 2

Cylinder 40 21 18 540 2

Diabetes 9 0 8 768 2

Glass 10 0 9 214 7

Horse-

Colic

23 15 7 368 2

Ionosphere 35 0 34 351 2

Iris 5 0 4 150 2

Labor 17 8 8 57 2

Segment 20 0 19 2310 7

Sonar 61 0 60 208 2

Splice 62 61 0 3190 3

Vote 17 16 0 435 2

positive instances over the number of instances while

recall is the ratio between the total number of correctly

classified instances over the total number of positive

instances. F-measure is computed as:

 (2)

 Specificity is the percentage of negative instances

that were predicted as negative. Information score is

defined by [9] represents the prior information that is

needed to correctly classify instances minus the residual

information. Finally, root mean square error (RMS) is

computed as the square root of the mean of the square of

the differences of the predictions and the actual class of

all instances.

B. Procedure

Our system automatically builds a set of strategies and

performs classification on a specific dataset. We choose

10-fold Cross Validation (CV) to evaluate the algorithms,

as it is a commonly used approach in machine learning for

evaluating algorithm configuration. Basically, we partition

the original dataset into 10 sub-sets, one of which is used

for testing while the remaining nine sub-sets are used for

training. The CV process is then run ten times and the

twelve measures described above will be recorded and

aggregated to produce a single measure for this strategy

on this dataset. We refer to this step as the learning

algorithm step. The results from this step contains the

name of the dataset, name of algorithm, parameters and

values of corresponding parameters, and the values of

twelve measures described in subsection A for all

combinations of the strategies and datasets. In the second

step, named algorithm selection step, we need to come up

with a list of recommended algorithms. Specifically, we

define the true ranking for a dataset di as the ordering of

algorithms based on their performance collected while

classifying this dataset. This true ranking is computed as

follows: first, the averages of the twelve values for each

algorithm grouped by algorithm parameters are calculated.

Then

 is computed and the overall ARR for

each algorithm is calculated as follows:

∑

 (3)

where m is the number of algorithms. The system ranked

the algorithms by their ARRs in descending order. Since

depends on the value of AccD in addition to

accuracy and running time. This rank is considered as the

true ranking with a given value of AccD for the dataset di.

The intuition behind this idea is that given two different

users with two different preferences in the way they solve

a learning problem, different lists of algorithms will be

recommended.

 If we do not know anything about the performance of

any algorithms on a given dataset, kNN algorithm is used

to find the nearest neighbor datasets. The set of

algorithms performing well on these sets is used to

generate the recommended list for the new dataset. We

evaluate the ability to recommend algorithms by assessing

the correlation between the true ranking obtained above

and the recommended ranking. The recommended ranking

on a specific dataset is computed by aggregating the ARR

measurements on all the datasets in the nearest neighbor

set. Basically, for each dataset in the testbed, we compute

its Euclidean distance to each of the remaining datasets.

Each dataset is described by 25 data characteristics

presented earlier in subsection A. Given two datasets

ap={p1,p2,…,p25} and aq={q1, q2,…,q25}, the Euclidean

distance between ap and aq is defined as follows:

 () √∑

 (4)

Note that these values pi and qi have been normalized.

Then k datasets with smallest distances are chosen to be

the nearest neighbors. In this implementation, we choose

k=3. After the nearest neighbor set is formed, we compute

the ranking by aggregating the ARR through all of the

datasets in the nearest neighbor sets and taking averages

of all available algorithms. The approach is discussed in

details in [5].

∑ √∏

 (5)

in which m is the number of algorithms and k is the

number of datasets in the nearest neighbor set.

 We compute the true ranking and recommended

ranking for three values of AccD. Recalling that AccD is

the value that represents the emphasis the user has on

either time or accuracy. We choose three values for AccD

(0.1%, 1% and 10%) as they are used in other experiments

with ARR [5]. With AccD being 0.1%, it reflects a profile

of a machine learning practitioner who emphasizes more

on accuracy while with AccD being 10%, it reflects a

profile of an industry software developer who emphasizes

more on running time. After the true ranking and

recommended ranking are computed, we use Spearman’s

correlation to find if the rankings are correlated with each

other. Since we are more interested in ranking order

(ordinal scale), Spearman correlation is an appropriate

choice for analysis. All data analysis is performed using

SPSS version 9.0 [17].

V. RESULTS AND DISCUSSION

The goals of our evaluation are addressed through this

experiment. First, the robustness and ease of use of our

framework has been tested with 7510 runs. Each run is the

execution of a strategy on a dataset on one node of our

cluster: Dell Poweredge 2950 with 2 quad core Intel

Xeon E5420 processors @ 2.50GHz, 16GB Ram, 80GB

7.2k rpm SATA drive. The input of each run is a tuple

(algorithm, parameters, dataset). The output of each run is

the value of the above 12 measures. The outputs of this

step then serve as inputs to the algorithm selection step,

after which, an algorithm ranking is produced. This

ranking is called true ranking for a given dataset for a

given user profile. TABLE II shows the real ranking of

the top 5 of algorithms for each dataset in the testbed.

TABLE II. TOP 5 ALGORITHMS FOR ALL DATASETS.

Dataset Top 5

algorithms for

accuracy

emphasized

users

(AccD=0.1%)

Top 5 algorithms

for neutral users

(AccD=1%)

Top 5 algorithms

for running time

emphasized users

(AccD=10%)

Anneal

LMT,RandomTr

ee

NNge,HyperPip

es, JRIP

NNge,

RandomTree,

SMO-PolyKernel,

RBFNetwork,

JRIP

ZeroR, NNge,

RandomTree, SMO-

PolyKernel, OneR

Arrythmia ADTree,VotedP

erceptron,

SPegasos,

AODE, LBR

VotedPerceptron,

ADTree,

Spegasos, AODE,

LBR

ZeroR,

DecisionStump,

SimpleLogistic,

OneR, RandomTree

Audiology IB1,SMO-

PolyKernel,LM

T, HyperPipes,

NNge

ZeroR, IB1,

OneR,

DecisionStump,

ConjunctiveRule

OneR, IB1,

DecisionStump,

ConjunctiveRule,

RandomTree

Autos LMT,

RandomTree,

NNge,

HyperPie, JRIP

NNge,

RandomTree,

SMO_PolyKernel

, RBFNetwork,

JRIP

ZeroR, NNge,

RandomTree, SMO-

PolyKernel, OneR

Balance-

scale

LMT, FT,

RandomForest,

NNge,

RandomTree

FT, NNge, LMT,

SMO-

PolyKernel,IB1

RBFNetwork,

NBTree,

DecisionStump,

LADTree,

DecisionTable-

BestFirst

Breast-

cancer

IB1,

RandomForest,

RandomTree,

NNge, KStar

IB1,

RandomForest,

NNge,

RandomTree,

JRIP

BFTree,,

DecisionStump,

ZeroR, NNge,

RandomForest

Car NNge, BFTree,

SimpleCart,

LMT, SMO-

PolyKernel

NNge, IB1,

RandomTree,

RBFNetwork,

BFTree

IB1, OneR, NNge,

DecisionStump,

ZeroR

Cmc RBFNetwork,

Logistic,

RandomForest,

RandomTree,

NNge

RBFNetwork,

Logistic,

RandomTree,

RandomForest,

IB1

ZeroR, RBFNetwork,

Logistic, HyperPiper,

RandomTree

Credit-

rating

RandomForest,

NNge, IB1,

RandomTree,

JRIP

NNge,

RandomForest,

IB1, BFTree,

RandomTree

LADTree, BFTree,

OneR, SMO-

PolyKernel,

DecisionStump

Cylinder

Logistic, KStar,

HyperPipes,

IB1, NNge

HyperPipes,

Logistic, NNge,

KStar,

RandomTree

HyperPipes, VFI,

NaiveBayesUpdateab

le, ZeroR,

RandomTree

Diabetes RandomForest,

NNge,

RandomTree,

IB1, BFTree

RandomForest,

NNge,

RandomTree,

BFTree, REPTree

BFTree, ADTree,

REPTree, NNge,

RandomForest

Glass IB1,

RandomForest,

Logistic, LMT,

RandomTree

NNge, IB1,

SMO_PolyKernel

, RandomTree,

RBFNetwork

IB1, NNge,

DecisionStump,

ZeroR, OneR

Horse-Colic Winnow, LBR,

AODE,

RandomForest,

BFTree

Winnow, LBR,

AODE,

SimpleCart,

RandomForest

VotePerceptron,

BFTree, NNge,

RandomTree, JRIP

Ionosphere RandomForest,

NNge,

RandomTree,

JRIP, NBTree

NNge, BFTree,

RandomTree,

JRIP,

RandomForest

NNge, OneR,

BFTree, JRIP,

RandomTree

Iris NNge,

RandomTree,

IB1, LADTree,

RandomForest

NNge, BFTree,

RandomTree,

JRIP, REPTree

NNge, OneR,

BFTree, JRIP,

RandomTree

Labor NaiveBayes,

JRIP, Logistic,

LMT,

RBFNetwork

NaiveBayes,

JRIP, LMT,

RBFNetwork,

NNge

BFTree, JRIP,

NaiveBayes, NNge,

OneR

Segment HyperPipes,

SimpleCart, IB1,

BFTree, NNge

BFTree,

SimpleCart,

HyperPipes,

NNge, IB1

ZeroR, BFTree,

SimpleCart,

HyperPipes, OneR

Sonar

IB1,

RandomForest,

NBTree, JRIP,

RandomTree

IB1,

RandomForest,

LADTree,

ADTree,

RandomTree

LADTree, ADTree,

FT, RandomTree,

ZeroR

Splice AODE, FT,

SMO-

PolyKernel,

NaiveBayesSim

ple, JRIP

NaiveBayesSimpl

e, VFI, AODE,

SMO-Kernel,

RandomForest

NaiveBayesSimple,

ZeroR, OneR,

HyperPipes,

DecisionStump

Vote RandomForest,

NNge, ADTree,

RandomTree,

IB1

RandomForest,

RandomTree,

IB1, NNge,

ADTree

OneR,

DecisionStump,

RandomTree, IB1,

RandomForest

 In TABLE III, we show an example of the accuracy

and running time (in milliseconds) for the top 5

algorithms performed on the anneal dataset. With AccD

value being 10%, the algorithms with shorter running time

are preferred. Therefore, we can see the algorithms with

faster average running time such as ZeroR, NNge,

Random Tree. With value of AccD being 0.1%, the

algorithms with higher accuracy are preferred. Thus, we

saw algorithms with faster average running time such as

LMT in this list.

TABLE III. AN EXAMPLE OF RUNNING TIME AND

ACCURACY TRADEOFF FOR ANNEAL

DATASET.

 We assess the second goal of our evaluation by

computing the correlation between true rankings and the

recommended rankings. The recommended ranking is

created by aggregating the ranking of all the algorithms

performed with all the datasets in the nearest neighbor

sets. The nearest neighbor set for a specific dataset is

computed by finding k datasets (k=3 in this

implementation) that have the shortest Euclidean distance

to that given dataset. TABLE IV shows the datasets and

their nearest neighbor sets. NN1, NN2, NN3 are the name

of the datasets in the nearest neighbor for a given dataset

and distance 1, distance 2, and distance 3 are the

corresponding Euclidean distance from NN1, NN2, and

NN3 to the given dataset.

 We generated the recommended algorithm list for all

datasets and computed the Spearman’s correlation

between the true ranking and the recommended ranking of

algorithms for a specific dataset. The results are shown in

TABLE V.

Algorithm Accuracy Time Algorithm Accuracy Time

ZeroR 0.327 2 LMT 0.902 1131

NNge 0.887 6 RandomTree 0.884 13

RandomTree 0.884 13 Nnge 0.887 6

SMO-PolyKernel 0.833 13 HyperPipes 0.744 91

OneR 0.553 9 JRIP 0.890 77

AccD=10% (emphasize on running time) AccD=0.1% (emphasize on accuracy)

Dataset NN1 Distance 1NN2 Distance 2 NN3 Distance 3

anneal vote 0.420 labor 0.431 balance-scale 0.432

arrhythmia audiology 0.473 sonar 0.526 cylinder 0.537

audiology autos 0.361 glass 0.456 arrhythmia 0.473

autos vote 0.261 car 0.264 breast-cancer 0.342

breast-cancer diabetes 0.073 ionosphere 0.083 sonar 0.153

car diabetes 0.119 credit-rating 0.151 cylinder 0.162

cmc Ionosphere 0.170 breast-cancer 0.187 diabetes 0.199

credit-rating ionosphere 0.081 sonar 0.112 vote 0.121

cylinder car 0.162 vote 0.171 sonar 0.181

diabetes breast-cancer 0.073 ionosphere 0.083 vote 0.114

glass iris 0.188 balance-scale 0.228 segment 0.229

horse-colic vote 0.090 ionosphere 0.139 labor 0.170

ionosphere labor 0.068 credit-rating 0.081 breast-cancer 0.083

iris ionosphere 0.171 glass 0.188 vote 0.205

labor Ionosphere 0.068 vote 0.088 disbetes 0.127

segment glass 0.229 cmc 0.263 iris 0.302

sonar credit-rating 0.112 breast-cancer 0.153 vote 0.161

splice car 0.277 cmc 0.313 cylinder 0.316

vote labor 0.088 horse-colic 0.090 diabetes 0.114

TABLE IV. DATASETS AND THEIR NEAREST NEIGHBORS

TABLE V. SPEARMAN’S CORRELATION BETWEEN

REAL RANKING AND RECOMMENDED RANKING OF

ALGORITHMS FOR ALL 20 DATASETS.

 As we can see, among 60 pairs of algorithm rankings,

there is only one pair (dataset: arrhythmia, AccD=1%)

that yields negative correlation. Six more pairs have weak

correlations (Spearman’s correlation < 0.3, Sig(1-tail) >

0.05). The remaining fifty three pairs (88%), as

highlighted in TABLE V, have correlations bigger than

0.3 (Sig (1-tail) <0.05). More importantly, thirty nine

pairs (65%) have strong correlation (Spearman’s

correlation>= 0.5, Sig (1-tail) < 0.05). Notice that the

distances of the three datasets in the nearest neighbors of

arrhythmia dataset are bigger than other distances for all

three values of AccD. That means using the algorithm

rankings for audiology, sonar and cylinder to predict the

ranking for arrhythmia may not be precise.

Additionally, the distance between two dataset

depends on the set of data characteristics.

Therefore, the more related the data

characteristic set is to the algorithm

performance, the more precise and more

significant the distance is.

 In summary, our framework has allowed us

to set up experiments very easily, especially

when dealing with parameters having ranges

of values. More importantly, it produces the

algorithms rankings related to the true

ranking for a given dataset.

VI. CONCLUSION

We have reported our effort on the

development of a flexible, generic framework

that supports algorithm selection based on

studying the algorithms’ past performance

behaviors on relevant datasets. In this work,

we considered all the features of the datasets

as well as all data characteristics of the

datasets for determining the relevant datasets.

Our contributions are two folds. First, the

framework is very flexible for users to add

any news algorithms and parameters.

Additionally, it supports parameters with

range values. Secondly, we use the typical

evaluation procedure in metalearning to

assess the algorithm rankings. Our results

show that 88% of the recommended rankings

correlate with the true rankings. As there is

very little guidance available for algorithm-

parameter selection, this framework can be

used to automatically generate the search

space and suggest the algorithm depending

the user’s preferences.

This problem is particularly interesting

and challenging in both the research and

validation phases. The development and

evaluation of this framework is the beginning

of our quest to explore the combination

between algorithm selection and feature

selection in metalearning. There are many

ways we can extend and improve this

framework. In this work, we currently use 25

data characteristics extracted by DCT tool to represent a

dataset. The problem is that except for the general set of

characters, some datasets with only numerical features

may not have the same data characteristics with the

datasets having only symbolic features. We would like to

explore other types of data characteristics such as DeCT

[13] which explore the tree structures of datasets.

Secondly, we currently use the whole set of features of

any dataset in our testbed in our learning algorithm. The

machine learning community has a long history of work

on feature selection that can be used to improve the

process. Next, one direction closely related to

 AccD=10% AccD=0.1% AccD=1%

Dataset

Sprearman's

correlation

Sig

(1-tail)

Spearman's

correlation

Sig

(1-tail)

Spearman's

correlation

Sig

(1-tail)

Anneal 0.457 0.012 0.525 0.004 0.575 0.001

Arrhythmia 0.208 0.14 0.144 0.224 -0.166 0.19

Audiology 0.302 0.071 0.314 0.059 0.067 0.373

Autos 0.446 0.011 0.4 0.021 0.337 0.046

Balance-scale 0.148 0.231 0.57 0.001 0.504 0.004

Breast-cancer 0.383 0.018 0.68 <0.001 0.68 <0.001

Car 0.541 0.001 0.8 <0.001 0.545 0.001

CMC 0.333 0.045 0.57 0.001 0.5 0.004

Colic 0.316 0.044 0.745 <0.001 0.618 <0.001

Credit-rating 0.54 0.001 0.694 <0.001 0.656 <0.001

Cylinder 0.573 <0.001 0.597 0.001 0.501 0.002

Diabetes 0.372 0.028 0.784 <0.001 0.805 <0.001

Glass 0.703 <0.001 0.742 <0.001 0.721 <0.001

Ionosphere 0.338 0.039 0.829 <0.001 0.639 <0.001

Iris 0.659 <0.001 0.73 <0.001 0.833 <0.001

Labor 0.333 0.045 0.477 0.006 0.463 0.008

Segment 0.742 <0.001 0.743 <0.001 0.761 <0.001

Sonar 0.516 0.002 0.794 <0.001 0.801 <0.001

Splice 0.655 <0.001 0.481 0.007 0.375 0.032

Vote 0.669 <0.001 0.831 <0.001 0.693 <0.001

metalearning is deep learning [3] which is a prominent

form of hierarchical machine learning. Deep learning

utilizes many deep layers of abstract representation,

inspired by human visual processing capabilities. Deep

learning may help us discover the semantic meaning

behind why certain algorithms perform best on some

testbeds and poorly in others. These two themes (deep

learning and metalearning) ultimately come down to the

intentional use of structured signal similarity/intersection

(A ∩ B) and the unstructured noise dis-

similarity/symmetric difference. As such, we would argue

for a ‘Relative Network’ of objects and their relationships,

structured entirely along the above. We would like to

leverage our selection algorithm work to understand

deeply why certain algorithms work on certain testbeds

but poorly on others.

 ACKNOWLEDGEMENT

This research is a part of the Dartmouth Metalearning

Working Group project, award N10PC20221, funded by

IARPA. Thank you Christopher Witt for useful comments

while editing this paper.

REFERENCES

[1] S. Ali, and K. Smith. “On learning algorithm selection for
classification”. Applied Soft Computing, 6(2), pp. 119–138.
2006.

[2] A. Bazleh, P. Gholami and F. Soleymani. "A New
Approach Using Data Envelopment Analysis for Ranking
Classification Algorithms". Journal of Mathematics and
Statistics, 7 (4), pp. 282-288, 2011.

[3] Y. Bengio. "Learning Deep Architectures for AI".
Foundations and Trends in Machine Learning. 2(1), pp. 1-
127. 2009.

[4] P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta.
“Metalearning: Application to Data Mining”. Springer.
2010.

[5] P. B. Brazdil, C. Soares, J. P. DA COSTA. “Ranking
Learning Algorithms: Using IBL and Meta-Learning on
Accuracy and Time Results”. Machine Learning, 50, pp.
251–277, 2003.

[6] A. Frank & A. Asuncion. “UCI Machine Learning
Repository”. Irvine, CA: University of California, School
of Information and Computer Science. 2010.

[7] A.Guazzelli, M. Zeller, W. Chen, and G. Williams.
“PMML: An Open Standard for Sharing Models”. The R
Journal. 1/1, 2009

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten. “The WEKA data mining
software: an update”. SIGKDD Explore. Newsletter. 11, 1,
pp. 10-18. 2009.

[9] I. Kononenko and I. Bratko. “Information-based evaluation
criterion for classifier’s performance”. Machine Learning,
6(1), pp. 67–80. 1991.

[10] C-C, Lai, and M-C Tsai. “An Empirical Performance
Comparison of Machine Learning Methods for Spam E-
mail Categorization”. In Proceedings of the Hy-brid
Intelligent Systems, HIS '04, pp. 44 - 48. 2004

[11] G. Lindner and R. Studer. “AST: Support for Algorithm
Selection with a CBR Approach”. In Proceedings of PKDD
'99, Jan M. Zytkow and Jan Rauch (Eds.). Springer-Verlag,
pp. 418-423.1999.

[12] D. Michie, D. J. Spiegelhalter, and C. Taylor Eds.
“Machine Learning, Neural and Statistical Classification”.
Ellis Horwood, New York. 1994

[13] Y. Peng, P. A. Flach, C. Soares and P. Brazdil. “Improved
Dataset Characterisation for Meta-learning”. Lecture Notes
in Computer Science, 2534/2002, pp. 193-208. 2002.

[14] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. “Meta-
Learning by landmarking various learning algorithms”. In
Proceedings of the 17th International Conference on
Machine Learning, pp. 743-750. 2000.

[15] J. R. Rice, “The algorithm selection problem,” ser.
Advances in Computers, M. Rubinoff and M. C. Yovits,
Eds. Elsevier, 15, pp. 65 – 118. 1976.

[16] K. A. Smith-Miles. “Cross-disciplinary perspectives on
meta-learning for algorithm selection”. ACM Computing.
Survey. 41(1), Article 6, 2009.

[17] SPSS Inc. SPSS Base 10.0 for Windows User's Guide.
SPSS Inc., Chicago IL. 1999.

Appendix 1

List of algorithms in the experiments

Bayes algorithms Lazy algorithms

AODE IB1

AODEsr IBk

NaiveBayes KStar

NaiveBayesSimple LBR

NaiveBayesUpdateable LWL
BayesNet

Function algorithms Rule algorithms

Logistic ConfunctiveRule
MultilayerPerceptron DecisionTable

RBFNetwork DTNB

SimpleLogistic JRIP
SMO NNge

SPegasos OneR

VotedPerceptron ZeroR
Winnow

Tree algorithms

ADtree LMT
BFTree NBTree

DecisionStump RandomForest

FT RandomTree
J48 REPTree

LADTree SimpleCart

Misc algorithms
HyperPipes VFI

