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ABSTRACT 

Modeling Seed Dispersal and Population Migration  

Given a Distribution of Seed Handling Times 

 and Variable Dispersal Motility: 

Case Study for Pinyon and 

 Juniper in Utah. 

by 

Ram C. Neupane, Doctor of Philosophy 

Utah State University, 2015 

Major Professor: Dr. James A. Powell                                                                             

Department: Mathematics and Statistics 

 

The distribution of fruiting tree species is strongly determined by the behavior and 

range of vertebrate dispersers, particularly birds. Birds either consume and digest seeds or 

carry and cache them at some distance from the source tree. These carried seeds are 

described by a dispersal kernel, which captures the probability that the seed will move a 

certain distance by the end of the process. Initially, we model active seed dispersal of this 

nature, introducing seed handling time probabilities into the dispersal model to generate a 

seed digestion kernel (SDK) which is used to estimate the speed at which juniper and 

pinyon forest boundaries move. Our finding suggests that pinyon may be able to migrate 

up to two orders of magnitude more rapidly. 
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In the core of this dissertation, we add ecological diffusion to the dispersal model 

and approximate SDKs in highly variable landscapes. Spatial variability in habitat directly 

affects the movement of dispersers and leads to anisotropic dispersal kernels. We introduce 

multiple scales and apply homogenization method to determine leading order solutions for 

the SDK. Returning to the integrodifference equation model for adult trees, we investigate 

the rate of forest migration in variable landscapes. We show that speeds calculated using 

the harmonic average motility and mean seed handling time accurately predict rates of 

invasion for the spatially variable system. 

Regional scale forest distribution models are frequently used to project tree 

migration based on climate and geographic variables such as elevation, latitude and 

‘trained’ using landscape and regional presence-absence data. How seeds are distributed in 

these models, however, is far more problematic since it is difficult to accurately 

parameterize dispersal models using large-scale presence-absence data, particularly for 

actively dispersed tree species. In the final section, we implement the HSDKs to find 

dispersal probabilities on the large scales, linking small-pixel environmental variables to 

large-scale migration. 

     (136 pages) 
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PUBLIC ABSTRACT 

Modeling Seed Dispersal and Population Migration  

Given a Distribution of Seed Handling Times 

 and Variable Dispersal Motility: 

Case Study for Pinyon and 

 Juniper in Utah. 

by 

Ram C. Neupane, Doctor of Philosophy 

Utah State University, 2015 

Major Professor: Dr. James A. Powell                                                                             

Department: Mathematics and Statistics 

 

The spread of fruiting tree species is strongly determined by the behavior and range 

of fruit-eating animals, particularly birds. Birds either consume and digest seeds or carry 

and cache them at some distance from the source tree. These carried and settled seeds 

provide some form of distribution which generates tree spread to the new location. Firstly, 

we modal seed dispersal by birds and introduce it in a dispersal model to estimate seed 

distribution. Using this distribution, we create a population model to estimate the speed at 

which juniper and pinyon forest boundaries move.  

Secondly, we introduce a fact that bird movement occurs based on local habitat 

type to receive modified dispersal model. Birds can easily move many kilometers but 

habitat changes on the scale of tens of meters with rapidly varying. We develop a new 

technique to solve the modified dispersal model and approximate the form of transported 



vi 

 

 

 

seed distributions in highly variable landscapes. Using a tree population model, we 

investigate the rate of forest migration in variable landscapes. We show that speeds 

calculated using average motility of animals and mean seed handling times accurately 

predict the migration rate of trees. 

Regional scale forest distribution models are frequently used to project tree 

migration based on climate and geographic variables such as elevation, and regional 

presence-absence data. It is difficult to accurately use dispersal models based on large-

scale presence-absence data, particularly for tree species dispersed by birds. The challenge 

is that variables associated with seed dispersal by birds are represented only few meters 

while the smallest pixel size for the distribution models begins with few kilometers. 

Transported seed distribution estimated in the variable landscape offers a tool to make use 

of this scale separation. Finally, we develop a scenarios that allows us to find large scale 

dispersal probabilities based on small scale environmental variables. 
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CHAPTER 1 

INTRODUCTION 

The diffusion equation represents a fundamental framework for determining the 

spatial spread of organisms (Hengeveld 1988, Okubo and Levin 1989, Shigesada et al., 

1995, Skalski and Gilliam 2003, Morales and Carlo 2006). Fisher (1937) studied 

asymptotic rates of invasion of mutant genes and his ideas were extended by Skellam 

(1951) to ecological problems (the spread of animal and plant populations on landscape 

scales). Later on, diffusion equations were used to describe the spread of the cereal leaf 

beetle, muskrat, small cabbage white butterfly (Andow et al., 1990) and dispersal of cholla 

(Allen et al., 1991). 

At population and landscape scales movement is often modeled by Fickian 

diffusion (Reeve et al., 2008), in which population redistribution is driven by population 

gradients. This means that the movement of individuals tends from higher concentrations 

to lower concentrations, and changes in local habitat only alter the movement rate down 

the gradient (Okubo 2001). However, animal responses to spatial heterogeneity are not 

likely to be Fickian.  When deer bed down at or inside a treeline they do not randomly 

diffuse past the forest edge, and when American robins forage for juniper berries they 

exhibit high fidelity to the location of the trees and simply avoid the surrounding steppe, 

unless they are choosing to move between patches of juniper.  In both of these cases the 

animals are making movement choices based on the patch of habitat in which they currently 

reside, not perceptions of population gradients. A more appropriate way to describe animal 

movement in which organisms make random steps based on current habitat types is 

“ecological diffusion” (Turchin 1998). In this approach differences in population 
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dispersion are driven by residence times in differing habitat types. Where residence times 

are high (in juniper for robins) populations accumulate, and where residence times are low 

(in sagebrush) the population density is low.  An ecological diffusion model supports 

discontinuous solutions at boundaries, consequently, deer can accumulate inside of a forest 

patch without diffusing out into the adjacent meadow against their will. Turchin (1998) 

observed that residence time and motility (the analog of diffusivity) are inversely 

proportional. Thus, if the motility is low in a patch (residence time is high) then individuals 

don’t choose to leave the patch very frequently and the population density increases. 

Diffusion models usually assume that animal movement properties are constant in 

space and time, but in fact animals move differently in different habitats. Movement occurs 

while animals search for food, water, breeding sites, mates and shelter. When animal 

motility is independent in space, Neubert et al., 1995 have discussed two limiting cases of 

seed spread. If every dispersal agent requires exactly the same amount of time to handle 

individual seeds, seed dispersal on the landscape is Gaussian. On the other hand, if these 

agents drop seeds at a constant rate in both time and space, seed spread in a Laplace 

distribution. Both extremes, however, are unlikely in real life scenarios. Neupane and 

Powell (2015) hypothesized that handling time is sampled from a distribution after seeds 

are picked. Using a time-dependent seed handling function they calculated seed digestion 

kernels (SDK). Neupane and Powell showed that the SDK accurately described seed 

dispersal for pinyon pine and Utah juniper, as reflected in historical migration rate of these 

species.  



3 

 

 

 

 Birds play a major, but different, role for dispersing pinyon  (Pinus monophylla) and 

juniper (Juniperus osteosperma). Junipers produce seeds which are available most of the 

winter, and consequently many birds (particularly American robins, Turdus migratorius, 

and cedar waxwings, Bombycilla cedrorum) consume juniper berries (Chambers et al., 

1999).  The berries are then digested and seeds deposited some time later by defecation. 

Digestion does not impede the seeds’ ability to germinate, particularly in the case of robins 

(Chavez-Ramirez and Slack, 1994), and juniper is thus dispersed while robins forage over 

scores of meters.   

By contrast, pinyon seed dispersal by Clark’s nutcracker (Nucifraga columbiana) and 

pinyon jays (Gymnorhinus cyanocephalus) occurs primarily through seed caching in the 

summer and fall, when the cones mature.  Some seeds are consumed immediately, but the 

majority are placed in a sublingual pouch and carried several kilometers to remote cache 

sites, where they are buried in small groups (Vanderwall and Balda 1977, Balda and 

Bateman 1971).  Most of the cache sites are found during the winter, but a substantial 

percentage of caches are never revisited and the cached seeds are in an ideal situation for 

germination, which determines pinyon distribution. 

Variation in climate also influences the expansion of pinyon-juniper (P-J) woodland 

via impacts on germination and survival rates. The abundance of summer rainfall and 

warming in the winter and spring have caused P-J boundaries to shift northwards (Neilson 

1987, Miller and Wigand 1994). Juniper can sustain more severe drought than pinyon 

(Breshears et al., 2005), making pinyon more sensitive to climate than juniper (Mueller et 

al., 2005).  Although juniper is more drought tolerant than pinyon, both species have 
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declined as their habitat shrinks in the southwestern United States because of accelerated 

global warming.  Recent drought conditions in northern New Mexico, Arizona and 

southern Utah are more severe than any historic drought. Consequently, P-J habitat 

boundaries are shifting northwards (Breshears, et al., 1997, Allen and Breshears, 1998, 

Breshears, et al., 2005) rapidly. 

Edith and Leathwick (2009) have defined species distribution models (SDMs) as 

“the models that relate species distribution data (occurrence or abundance at known 

locations) with information on the environmental and/or spatial characteristics of those 

locations. These models can be used to provide understanding and/or to predict species 

distribution across a landscape”. To project future spread of plants and animals, the use of 

species distribution models has increased drastically (Guisan and Thuiller 2005, Lobo et 

al., 2010). These models mainly depend on species presence/absence data and 

environmental predictor variables (maximum summer temperature, minimum winter 

temperature, precipitation, land cover, distance of intermittent water, distance of perennial 

water, distance of agricultural zone and distance of human modified area). To estimate the 

future shifting pinyons and junipers (in Western US), Gibson et al., 2013 used climatic, 

topographic and presence-absence data existing in big grids (approximately 2400 ha. in 

area of each grid) for these species.  Many ecologists use climate data, soil type data and 

landscape use data in species distribution models (Peters et al., 2013, Menke et al., 2009 

and Luoto et al., 2007). Araujo and Guisan (2006) demonstrated that climate predictor can 

be used to project species distribution accurately. Barbet-Massin and Jetz (2014) observed 

that climate predictors can provide accurate results for bird distributions. However, Austin 
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and Van Niel (2011) concluded that climatic and non-climatic predictors are equally 

important and need to be tested at high resolution in order to achieve projection accuracy. 

There is no consistency in spatial resolution grid size (from 1 km2 to 2500 km2 ) 

used in species distribution models (Gibson et al., 2013, Sanchez-Fernandez et al., 2011, 

Luoto et al., 2007, Austin and Van Niel 2011). Scales are often chosen due to database 

management, computational efficiency or data availability constraints as opposed to 

mechanistic or biological concerns, even though scale choice creates uncertainties in the 

resulting projected distribution. Data with fine resolution may not match with 

environmental factors appropriately. However, almost always the scale of distribution 

model grids is much larger than the resolution of habitat variability which influences 

vertebrate motion. 

This makes the use of seed dispersal kernels, which describe the probability of 

seeds moving from one cell to another, very problematic in species distribution models. 

The migration of fruiting trees normally occurs when birds transport seeds from parent 

plants to new sites (Gosper et al., 2005, Renne et al., 2002, Glyphis et al., 1981). The scale 

of habitat patches is tens of meters but birds can easily fly kilometer every easily. This 

behavior generates spatial dependence on small scales with modulation on large scales. 

This multi-scale dependence is perfectly suited to the method of homogenization (Garlick 

et al., 2010). In principle, dispersal kernels generated via homogenization can accurately 

represent the large scale modulation of dispersal probabilities while incorporating small-

scale habitat features.   
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In chapter 2, we numerically calculate the seed digestion kernel (SDK) based on 

probability density functions (PDFs) of seed handling times. Once the kernel is determined, 

we will use it in a generic IDE population model to estimate invasion speeds and compare 

with speeds generated from Gaussian and Laplace kernels, which are limiting cases. 

Surprisingly, in some parameter regimes the SDK yields more rapid invasion speeds than 

either Laplace or Gaussian kernels.  

Predictions for juniper and pinyon migration rates will be generated using literature values 

for parameters. We find that pinyon has much higher potential to find and occupy new 

niches than juniper, consistent with observations of Holocene range expansion for the two 

species. 

In chapter 3, we adapt the dispersal model from Neubert et al., 1995 by introducing 

ecological diffusion with highly variable motility and a modal distribution of seed handling 

times. We assume that motility varies on short scales and use multiple scales in space and 

time to apply the method of homogenization for solving the model. Using a solvability 

condition, we derive a simple constant diffusion equation on large scales and approximate 

the SDK. This kernel depends on the harmonic average of the motility. We then embed the 

kernel into an IDE population model for adult plants. The large scale diffusion equation 

depends on small-scale variability only through the harmonically averaged motility, which 

inflicts a large-scale isotropic structure on the dispersal kernel.  We hypothesize   that the 

harmonic average motility therefore predicts the invasion speed in spatially complex 

environments. Analytic and numerical simulation methods are used to compare predicted 
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and observed migration speeds. We conclude that observed speed converges 

asymptotically to the predicted constant speed. 

In chapter 4, we modify the existing seed dispersal model to reflect animals’ 

utilization of landscape and their space-dependent motility, using an ecological diffusion 

and variable seed handling time model. The homogenization technique will be used to 

solve this model assuming that habitat variability is reflected on 30m scales but dispersal 

is to be resolved on kilometer-scale grids. This generates a simple diffusion equation on 

large scales which describes large scale modulation of dispersal probabilities, depending 

on parameters that are defined only on the large grid. The actual solution is a dispersal 

kernel including both small scale variability with motility and utilization. Neupane and 

Powell (2015) estimated one dimensional continuous seed transport by frugivorous birds 

in a variable landscape. We extend the seed transport in two dimensions discretely on vary 

large grids based on underlying ecological diffusion model. We connect the kernel to 

discrete large-scale dispersal by integrating over large cells, estimating dispersal 

probabilities that depend on summed landscape cover fractions residence time spent in 

different cover types, and cover type utilization by frugivorous.  Finally, explicit solutions 

in the constant and uniform handling time limits are derived and solution behavior explored 

on randomly generated landscapes.  
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CHAPTER 2 

MATHEMATICAL MODEL OF ACTIVE SEED DISPERSAL BY 

FRUGIVOROUS BIRDS AND MIGRATION POTENTIAL OF PINYON AND 

JUNIPER IN UTAH 

 

Abstract 

Seed dispersal of juniper and pinyon is a process in which frugivorous birds play an 

important role. Birds either consume and digest seeds or carry and cache them at some 

distance from the source tree. These transported and settled seeds can be described by a 

dispersal kernel, which captures the probability that the seed will move a certain distance 

by the end of the process. To model active seed dispersal of this nature, we introduce 

handling time probabilities into the dispersal model to generate a seed digestion kernel. In 

the limit of no variability in handling time the seed digestion kernel is Gaussian, whereas 

for uniform variability in handling time the kernel approaches a Laplace distribution. This 

allows us to standardize spatial movement (diffusion) and handling time (peak settling rate) 

parameters for all three distributions and compare.  Analysis of the tails indicates that the 

seed digestion kernel decays at a rate intermediate between Gaussian and Laplace seed 

kernels.  Using this seed digestion kernel, we create an invasion model to estimate the 

speed at which juniper and pinyon forest boundaries move. We find that the speed of seed 

invasion corresponding to the digestion kernel was faster than seeds resulting from Laplace 

and Gaussian kernels for more rapidly digested seeds. For longer handling times the speeds 

are bounded between the Laplace (faster) and Gaussian (slower) speeds. Using parameter 



14 

 

 

 

values from the literature we evaluate the migration potential of pinyon and juniper, finding 

that pinyon may be able to migrate up to two orders of magnitude more rapidly, consistent 

with observations of pine migration during the Holocene. 

 

2.1  Introduction 

Forest boundaries change over time, and in favorable climates can expand as tree seeds 

spread beyond the range of the forest and germinate into new trees.  Seeds may spread in 

a variety of ways. Common seed dispersal agents include wind, transportation in water, 

and transportation via birds and animals (either through being consumed and digested or 

being carried and cached). Because the diet of birds and some animals is often made up of 

fleshy-fruited plants, the pattern of seed dispersal and activities of vertebrate dispersers are 

closely related (Corlett 1998, Wenny 2001). Birds in particular contribute heavily to the 

spread of some plant populations (Clark et al., 2001, Herrera 1995). 

A case in point is seed dispersal and forest migration in two southwestern tree species: 

pinyon  (Pinus monophylla) and juniper (Juniperus osteosperma). In both species birds 

play a major, but different, role. Junipers produce seeds which are available most of the 

winter, and consequently many birds (particularly American robins, Turdus migratorius, 

and cedar waxwings, Bombycilla cedrorum) consume juniper berries (Chambers et al., 

1999).  The berries are then digested and seeds deposited some time later by defecation. 

Digestion does not impede the seeds’ ability to germinate, particularly in the case of robins 

(Chavez-Ramirez and Slack, 1994), and juniper is thus dispersed while robins forage over 

scores of meters.   
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By contrast, pinyon seed dispersal by Clark’s nutcracker (Nucifraga columbiana) and 

pinyon jays (Gymnorhinus cyanocephalus) occurs primarily through seed caching in the 

summer and fall, when the cones mature.  Some seeds are consumed immediately, but the 

majority are placed in a sublingual pouch and carried several kilometers to remote cache 

sites, where they are buried in small groups (Vanderwall and Balda 1977, Balda and 

Bateman 1971).  Most of the cache sites are found during the winter, but a substantial 

percentage of caches are never revisited and the cached seeds are in an ideal situation for 

germination, which determines pinyon distribution. 

Variation in climate also influences the expansion of pinyon-juniper (P-J) woodland 

via impacts on germination and survival rates. The abundance of summer rainfall and 

warming in the winter and spring have caused P-J boundaries to shift northwards (Neilson 

1987, Miller and Wigand 1994). Juniper can sustain more severe drought than pinyon 

(Breshears et al., 2005, Weisberg et al., 2007), making pinyon more sensitive to climate 

than juniper (Mueller et al., 2005).  Although juniper is more drought tolerant than pinyon, 

both species have declined as their habitat shrinks in the southwestern United States 

because of accelerated global warming.  Recent drought conditions in northern New 

Mexico, Arizona and southern Utah are more severe than any historic drought. 

Consequently, P-J habitat boundaries are shifting northwards (Breshears, et al., 1997, Allen 

and Breshears, 1998, Breshears, et al., 2005) rapidly. On the other hand, climate change is 

creating new P-J habitat in central Nevada (Weisberg et al., 2007), the central Great Basin 

(Bradley and Fleishman, 2008), northeastern Utah (Gray et al., 2006) and southeastern 

Oregon (Miller and Rose, 1995). This begs the following research questions: (i) can either 



16 

 

 

 

pinyon or juniper disperse far enough northward to colonize the new habitat? (ii) How 

rapidly may we expect forest boundaries to move? We will contribute to answering these 

questions by developing a PDF (Probability Density Function) for seed distribution by 

active dispersers and using a population-level Integrodifference Equation (IDE) to evaluate 

the migration potential of these two species.  

To model the spread of the seeds, we assume that seed cachers or frugivorous animals 

collect seeds (through consumption in the case of juniper berries or collection of pinyon 

seeds to cache at a distance) and then follow a random walk, using the modeling framework 

introduced by Neubert et al., 1995.  However, unlike previously considered ``failure rates'' 

or ``hazard functions'' (rates at which seeds are deposited on the ground), we note that the 

distribution of settling times for seed dispersal by birds should be modeled as distributions 

in time. Seeds  defecated or cached at times sampled from a seed handling PDF will be 

distributed on the ground in a spatial PDF, or seed digestion kernel (SDK), which is 

different from any previously-considered dispersal kernel.  We will derive the SDK from 

first principles and find that the mean handling time plays a crucial role in determining its 

form. The different handling of juniper and pinyon seeds leads to very different dispersal 

behavior. We will compare the SDK with two limiting kernels discussed by Neubert et al., 

1995, the Laplace and Gaussian kernels; the SDK behaves quite differently in the small 

handling time limit. 

 In this paper we numerically calculate the SDK based on PDFs of seed handling 

times. Once the kernel is determined, we will use it in a generic IDE population model to 

estimate invasion speeds and compare with speeds generated from Gaussian and Laplace 
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kernels, which are limiting cases. Surprisingly, in some parameter regimes the SDK yields 

more rapid invasion speeds than either Laplace or Gaussian kernels. Predictions for juniper 

and pinyon migration rates will be generated using literature values for parameters. We 

find that pinyon has much higher potential to find and occupy new niches than juniper, 

consistent with observations of Holocene range expansion for the two species. 

 

2.2   Methods 

2.2.1 Model for seed dispersal 

 We begin with a common model of dispersal and settling of propagules, (any 

material that is used for propagating an organism) introduced by Neubert et al., 1995   

                                 𝑃𝑡 = 𝐷𝑃𝑥𝑥 − ℎ(𝑡)𝑃,      𝑃(𝑥, 𝑡 = 0) = 𝛿(𝑥),                                 (2.1)                                

                                           𝑆𝑡 = ℎ(𝑡)𝑃,     𝑆(𝑥, 𝑡 = 0) = 0.                                           (2.2) 

In this model 𝑃(𝑥, 𝑡) represents the density of seeds during dispersal by frugivorous birds 

and animals, which are assumed to follow a random walk with diffusion rate D.  The 

function )(th represents the hazard function or a failure rate of seeds (i.e. rate at which 

seeds are placed on the ground by either caching or defectation).  The function ),( txS  is 

the density of settled seeds (seeds on the ground) at time t.  The Dirac delta function,

)(x , places seeds initially at the origin, with no seeds yet on the ground.  Because the 

system conserves the integral of all seeds at all locations, the sum, S(x,t) +P(x,t), is a PDF 

for seed location in space at time t. The SDK, K(x), is the long time limit of this process, 

𝐾(𝑥) = lim
𝑡→∞

𝑆(𝑥, 𝑡). 
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 An important modeling point is that, to be consistent with mechanisms of seed 

handling by vertebrates, the hazard function, h(t), must be a PDF in time. For example, 

when researchers measure times required for seed digestion and defecation, results are 

communicated as skewed frequency distributions with a strong mode and tails which 

decline to zero (e.g. Holthuijzen and Adkisson  1984). This is in direct contrast to failure 

rates considered in Neubert et al., 1995, none of which are modal PDFs. Observed 

distributions of handling times are asymmetrical, with long tails, and consequently a 

minimal characterization of such PDFs requires three parameters (one controlling the shape 

to the left of the mode, one controlling the location of the mode, and one controlling the 

shape of the tail for large t). We therefore propose 

                                                            ℎ(𝑡) =
𝑎 𝑡𝛼

𝑏𝛽+𝑡𝛽
 ,  𝛽 > 𝛼 + 1 > 0.                         (2.3)                 

In this distribution the constant b scales the mean digestion time of seeds while a is a 

normalization constant (not free, since it depends directly on the other three parameters so 

that h(t) integrates to one).  The parameters and  determine the shape of the tails of )(th

(shown in Figure 2.1 and Figure 2.2); if bt  , tth ~)( while tth ~)( as t .  The 

rational form of this hazard function allows us to apply the method of steepest descents to 

analyze the asymptotic shape of seed digestion kernels below. 

2.2.2   Solution Technique for Calculating SDK 

 We integrate the PDE directly and then approximate time integrals using the 

trapezoid rule. To begin, let 

                                                      dt
tb

at
f  










0

)( .                                                   (2.4)    
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Equation (2.1) becomes 

                                                       PtfDPP xxt )(' .                                                  (2.5)    

 An integrating factor of  𝑒𝑓(𝑡) can be used to give the solution 

                                         Dt

x
dh

Dt

xtf

e
Dt

e
e

Dt

e
txP
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4
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4
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2

0

2

44
),(












.                                    (2.6)    

Using equation (2.6) in the model (2.2) then we get 

                                  𝐾(𝑥) = lim
𝑡→∞

𝑆(𝑥, 𝑡) dte
Dt

th

t

Dt

x
dh




 0

2

4
)(

0 4

)(



.                              (2.7)     

 
Figure 2.1 This plot demonstrates the shape of the seed settling rate, h(t), over time with 

𝛽 = 55 and various values of 𝛼.  ( 1 (-), 7 (--), 25  (-.) and 50 (…)).  In 

this plot, we see that the left tail of the distribution is shifting to the right as  increases. 
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Figure 2.2 This plot demonstrates the shape of the seed settling rate, h(t), over time with 

𝛼 = 3 and various values of 𝛽 (with 5 (-), 10 (--), 25 (-.), 50 (…)).  As 

in Figure 2.1, we also see the right tail shifts to the right as   increases. 

 

Numerical approximations are then calculated using the trapezoid rule for numerical 

integration.  Solutions generated this way were cross-checked against the (much) more 

time-consuming finite difference solution of (2.1) and (2.2) (see Appendix A) to ensure 

accuracy.  For the same size of time steps we found that direct quadrature of integrals in 

(2.7) was substantially more accurate (and rapid) than solution of the PDEs using finite 

differences. 

 

2.2.3 Standardizing  the three kernels for comparison 

We wish to compare the SDK with the Gaussian and Laplace seed. The question is how 

to standardize the three kernels for comparison? Below we will show that the Laplace and 

Gaussian kernels arrive from different limiting choices for h(t). We standardize by 
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choosing parameters so that peak seed drop rates occur at the same time for all three 

handling PDFs (see Figure 2.3). Since constant seed settling (which leads to the Laplace 

dispersal kernel) is not a PDF, we instead use a uniform distribution on a bounded interval 

with  mean handling time precisely in the middle to coincide with the modes of the other 

two handling time distributions. Replacing a constant failure rate with a uniform PDF does 

not exactly generate the Laplace kernel; however, in Appendix B we show that the SDK 

generated by a uniform seed handling distribution is well-approximated by the Laplace 

distribution. 

For convenience, we assume 2  in equation (2.3) so that 01  is 

always true. The function ℎ(𝑡) is maximal at  

                                                     

 

2

)2( 


b
t .                                                  (2.8)       

We will call this time 𝑏̃. We wish to standardize the Gaussian and Laplace kernels so that 

their underlying seed processing PDFs have maxima at 𝑡 = 𝑏̃. For the Gaussian, let 

                                                          )()(
~

btth   .                                                     (2.9)        

Then 
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Figure 2.3 This plot provides an initial comparison of the three type of seed digestion rates, 

the PDF of seed digestion times (-) and the PDFs leading to the Gaussian kernel (---) and 

the Laplace kernel (…).  For this comparison, we fixed 5.7 , 5.5 and 5b . It can 

be seen that the three kernels share the same maximum to standardize the three kernels. 

 

To generate a Laplace kernel we assume that the distribution of seed settling is a step 

function defined by 

                                             













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    .b2   t          ,  0

,20          ,  

2
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~

~

~
bt

bth                                          (2.11)            

As is shown in Appendix B, the solution to (2.1) and (2.2) with the step function defined 

in equation (2.11) is approximately the Laplace kernel  

                                                  
~

2

~

22

1
)( bD

x

e

bD

xL



 .                                              (2.12)    

 After this standardization, the Gaussian kernel (2.10) and the Laplace kernel (2.12) 

are ready for comparison with the seed digestion kernel. Figure 2.4 illustrates the shape of 

seed distribution on the ground for the standardized kernels. Seeds seem to disperse to the 



23 

 

 

 

furthest for the Laplace (having fattest tail), )(xL , and least for the Gaussian (the thinnest 

tail) , )(xG . The pattern of seed dispersal under seed digestion kernel, )(xK , is bounded by 

the other two. This observation will be formalized using the method of steepest descents 

below. 

 

2.2.4 Analyzing the tail of seed digestion kernels 

 Here, we approximate the tail of the SDK using the steepest descent method 

(Marsden and Hoffman, 1987) to compare tails with Gaussian and Laplace seed kernels. 

As in the previous section, we assume 2  so that the rate of seed digestion equation  

 
Figure 2.4 Comparison of the seed digestion kernel (-), Gaussian kernel (---) and Laplace 

kernel (…)  with 10b , 3  and 7 . The Gaussian tail decays more rapidly than tail 

of seed digestion and the seed digestion tail decays more slowly than Laplace (the fattest 

tail). 
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(2.3) becomes 

                                                         



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th




2

)( .                                                    (2.13)           

Define the exponent in (2.7) as 
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The critical point of the function 𝐻(𝑡) is 
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equation (2.14) with respect to t and evaluating at 0tt  we get 
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Let us suppose 
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Equations (2.15) and (2.16) can be used with the generalized steepest descent theorem to 

approximate (2.7), giving 
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Analyzing K as x  gives the asymptotic behavior in the tail (see below). 
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2.2.5 Population Model for Evaluating Migration Potential    

To determine how the shape of the SDK affects rates of invasion, the kernels must be 

imbedded in a population model. Below we present a simplification of the model used by 

Powell and Zimmermann (2004) to describe the general behavior of an invasion by 

perennial plants. For xeric-adapted species like pinyon and juniper dispersing into the new 

regions, competition for water and space occurs primarily among seedlings. We take 

                                )()1()](*)([)(1 xNxkNxKTxN ttt  ,                            (2.18)          

where Nt represents the population density of adults in generation t. The function )(xK  is 

the SDK while 𝜔 is the mortality rate of adults per generation, k is the number of seeds 

produced per adult per generation, and 

t

t

NM

NMg
T





 

is the Beverton-Holt model for seed survival and germination in competition with other 

seeds. Here M  is the maximum number of surviving seeds, g  is the germination rate, 

and   is the seedling survival rate. The convolution in equation (2.18) is defined by 










 dyyxkNyKdyykNyxKxkNxK ttt )()()()()(*)( , 

and the integral represents the total number seeds arriving at location x from all possible 

locations, y . Therefore, the first term on the right hand of the invasion model (2.18) 

predicts the distribution of new trees depending on the available sources and the second 

term provides the surviving number of old trees so that the total is the population of trees 

in the next generation. 
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2.2.6 Analysis of invasion speeds 

To analyze invasion speeds for models like (2.18), we follow the analysis of  Kot et al., 

1996. Because the population density of a tree population approaches zero in advance of 

the invasion front, we can assume that as x  

                                                         
ux

t exN ~)( ,                                                     (2.19)         

with 1 .  We assume that the spread of the tree population is a traveling wave with 

parameter u determining the shape of its leading edge.  Introducing a constant, c , to 

represent the speed of invasion, the traveling wave of population density during an invasion 

satisfies 

                                                     )()(1 cxNxN tt  .                                                 (2.20)     

Combining equations (2.19) and (2.20)  

                                                      
)(

1 )( cxu

t exN 

   .                                                   (2.21)         

Plugging this into equation (2.18),  

                                     
uxuxcxu eexkKTe   )1(]*)([)(  ,                                 (2.22)          

Taking only leading order terms, 

                                         
uxuxcxu eexKRe   )1(*)(0

)(  ,                                    (2.23)             

where 𝑅0 = 𝑘𝑇
′(0) = 𝑘𝑔𝜎 is the net reproductive rate.  

 Writing the convolution of equation (2.23) in terms of an integral, we have 

                             ),1()()1()( 00   




uMRdvevKRe uvcu                          (2.24)           

where the moment generating function, M(u), is defined by 
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                                                    




 dvevKuM uv)()( .                                                (2.25)           

Differentiating equation (2.24) with respect to u and setting to zero to find the extremal 

invasion speed gives 

                                                        )('0 uMRcecu  .                                                   (2.26)              

Using equation (2.26) to eliminate c in (2.24) gives 

                      0)]1()(log[
)1()(

)('
)( 0

0

0 


 


uMR
uMR

uMR
uuF .                     (2.27)             

 To find the invasion speed, 𝑐̃, we solve equation (2.27) numerically for u and then 

use (2.26). Both M(u) and M'(u) were approximated for specific u using  the trapezoid rule; 

roots of )(uF were found using fzero in MATLAB. Those roots are used in equation (2.24) 

to predict invasion speed. 

 

2.3 Results 

2.3.1 Shape of kernels based on mean digestion time scaling parameter 

The mean digestion time scaling parameter b  plays a major role in determining seed 

dispersal. Changing the value of b  generates different shapes of solutions (see figure 2.5) 

with larger values of b  corresponding to broader dispersal, as we expected. If digestion or 

caching takes longer, birds have more time to travel before depositing seeds, resulting in 

seeds traveling further from the source. 
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Figure 2.5 Comparison of seed digestion kernels for various mean seed handling times. In 

this figure, 1b (-), 3b (--), 5b (-.) and 9b (…), illustrating broader dispersal for 

larger mean digestion times. 

 

 

2.3.2   Comparison of tails 

We would like to characterize the shape of the tail of the SDK and place it in the context 

of the well-known Gaussian (2.10) and Laplace kernels (2.12). The exponents of the 

exponential functions for both kernels determine the shapes of the corresponding tails.  To 

analyze the tails of these kernels, we consider large x and assume other parameter values 

are bounded.  The dominant terms in the exponents of the Gaussian and Laplace kernels 

are 
−𝑥2

2
7
3𝑏𝐷

 and 
−𝑥

√
2
2
3𝑏𝐷

, respectively.  It follows that the tail of the Gaussian kernel decays to 

zero much faster than the tail of the Laplace kernel when  𝑥 ≫ 1. 

In the case of the most slowly-decaying PDF of seed handling times, 3 , the SDK 

derived from the method of steepest descents (2.17) can be written as: 
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where )(h is given in equation (2.13).   Note here that branch cuts have not been chosen 

for the various complex functions in the exponent so we are at liberty to choose branches 

to keep results on the real axis.  Since  dh

t


0

0

)(  is finite, the dominant term in the exponent 

of (2.28) is   

                                                       
𝑥
4
3(4𝑎𝐷−𝑥2)

1
3

4𝑏𝐷
~
−𝑥2

4𝑏𝐷
                                                   (2.29)                           

and therefore 

                                                   log(|𝐾(𝑥)|)~ − |
−𝑥2

4𝑏𝐷
|.                                               (2.30)         

The exponents of Gaussian kernel and Laplace kernels are  

                                                       log(𝐺(𝑥))~
−𝑥2

2
7
3𝑏𝐷

 ,                                                  (2.31)            

and  

                                                     log(𝐿(𝑥))~
−𝑥

√
2
2
3𝑏𝐷

 .                                                  (2.32)           

Observing 

−𝑥2

2
7
3𝑏𝐷

< − |
−𝑥2

4𝑏𝐷
| ≪

−𝑥

√
2
2
3𝑏𝐷

, 

we conclude that the tail of Gaussian kernel decays to zero most rapidly while the tail of 

Laplace kernel is the slowest. The tail of the SDK is intermediate between the other two. 
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2.3.3   Relationship between invasion rate and mean digestion time  

 We have not chosen scales for generation time, population density and space yet.  

To compare the speeds of invasion from the population IDE (2.18), we may therefore, 

without loss of generality, choose mortality 2.0 , the reproductive rate 30 R  and the 

diffusion D=1. We fix the seed settling parameters 1 and 3 for the longest tail in 

)(th .  Using these values, we estimate the speeds of invasion corresponding to the SDK,

)(xK , the Gaussian kernel, )(xG , and the Laplace kernel, )(xL . Speeds of invasion are 

compared in figure 2.6 as a function of the mean digestion time scaling parameter b .  

 There is a strong relationship between the characteristic handling time, b, and 

invasion speed, c. The longer it takes to digest a seed, the faster forest migration. For small 

b, the SDK invasion speed is higher than the speeds corresponding to the Gaussian and 

Laplace kernels. On the other hand, for bigger b values, the speed of invasion with the 

Laplace kernel is fastest, the speed with a Gaussian kernel is slowest and the speed 

corresponding to the SDK stays between the other two, as might be expected from 

comparing tails.  

 As 0b , not only does the SDK give faster rates of invasion, but also speeds 

associated with the Gaussian and Laplace kernels decrease to zero whereas speeds 

corresponding to the SDK are still positive. This happens because both Gaussian and 

Laplace kernels approach the delta function, )(x , as 0b , meaning that seeds do not 

disperse. However, the seed digestion kernel has finite support as 0b  (because 

ℎ(𝑡)~𝑡𝛼−𝛽 as b 0 ). Since mean digestion time is non-zero, the SDK allows for seed 

dispersal even as b tends to zero. 
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Figure 2.6 Speeds of invasion calculated for the seed digestion kernel, the Gaussian kernel 

and the Laplace kernel. The solid line indicates the speed with seed digestion kernel, the 

dashed line indicates the speed with Gaussian kernel and the dotted line is the speed with 

Laplace kernel. The figure shows that the invasion speed produced from all three kernels 

always increasing in different rates as the increase of mean digestion time scaling 

parameter. 

  

  

2.4  Migration Potential of Pinyon and Juniper 

      To quantify invasion speeds in terms of yearly distance covered for both pinyon and 

juniper, we need specific data such as the mean generation time (G), mean dispersal space 

step ( ), mean dispersal time step (𝜏), mortality rate (𝜔) and the characteristic handling 

time (b) for each species. We also need to estimate the reproductive rate )( 0R  and the 

diffusion rate (D). We are fortunate to have a paired growth rate study on pinyon-juniper 

in central Utah (Tausch and West 1988) , in which population growth of both species was 

tracked dendrochronologically from  survivors of a fire in the mid-nineteenth century.   

This allows us to calculate 
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                                                            𝑅0 = √
N

n

𝐺
 ,                                                        (2.33)        

where G  is the generation time (duration from seedling to getting matured tree for 

producing seeds), 𝑛 is the initial number of trees and N is the total number of trees at the 

end of the study. To estimate the diffusion rate D for birds, we use  

                                                               𝐷 =
𝜆2

4𝜏
 ,                                                          (2.34)         

where 𝜆 is the root mean square displacement in a time step of the underlying random walk 

and τ is the mean time between steps in the walk (Turchin 1998).  A summary of parameters 

used for the two species, and supporting references, appears in Table 2.1.  

Table 2.1 Parameters used to estimate seed dispersal kernels and migration rates of juniper 

and pinyon in Utah.  References for parameter values are provided. 

 

Parameter Juniper Reference Pinyon Reference 

Generation 

time )(G  

50 yrs Li et al., (2011) 20 yrs Suzan-Azpiri et al., 

(2002) 

Mean dispersal 

space step ( ) 

55 m Chavez-Ramirez  

and Slack (1994) 

4500 m Vander Wall and 

 Balda, (1977) 

Mean dispersal 

time step ( ) 

4 min Chavez-Ramirez  

and Slack (1994) 

22.5 min Vander Wall and  

Balda, (1977) 

Diffusion (D) 189.1

 m2/min  

Calculated 225,000 m2

/min  
Calculated 

Mean handling 

time (b) 

14.9 min Holthuijzen and 

Adkisson (1984) 

52.5 min Vander Wall and 

 Balda, (1977) 

Reproductive 

Rate (R0) 

1.17 /gen Tausch and West 

(1988) 

2.04 /gen Tausch and West 

(1988) 

Mortality( ) 0.0004 Shaw et al., (2005) 0.00155 Shaw et al., (2005) 

 

 In order to calculate yearly invasion speed, c, we need to rescale both space and 

time, since we fixed D = 1 (equivalent to nondimensionalized space) in the numerical 

calculations. Additionally, each step in our IDE is a generation, which must be scaled back 

to years for comparison purposes.  Assuming the dimensional diffusion rate, D, is in m2 
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per minute and the mean handling time 𝑏̃  is in minutes, the only available space scale in 

the seed dispersal model (2.1) and (2.2) is 𝛼 = √𝐷𝑏̃ .     

Now, if 𝑐̃  is the speed of invasion associated with the nondimensional dispersal 

model (𝐷 = 1) then yearly migration rates can be calculated: 

                         𝑐 = 𝑐̃⏟
nondimensional steps

generation

× 𝛼⏟
meters

nondimensional steps

× 
1

           𝐺           ⏟        
generation
years

 .                    (2.35)          

Now we turn to specific parameter values for pinyon and juniper. 

 For pinyon we use a generation time G ~ 20 years from Suzan-Azpiri et al., 2002. 

To estimate 𝑅0 we refer to Tausch and West (1988), who determined that only 6 pinyon 

survived the nineteenth-century fire on their site.   The number of pinyon pines increased 

to 1051 over the next 145 years giving 𝑅0 = 2.04/generation for pinyon from equation 

(2.33). Vanderwall and Balda (1977) observed that Clark’s Nutcracker fly from 4000 to 

5000 meters while caching seeds, taking 15-30 minutes. We therefore take 𝜆 = 4500  

meters and use 𝜏 = 22.5 minutes, giving 𝐷 = 2.25 ×
105m2

min
.  They further observed seed 

handling in three phases.   Nutcrackers spend 45minutes collecting seeds to fill their pouch, 

15-30 minutes to travel to the caching area and 5-10 minutes to cache all seeds carried in 

their pouch. Averaging and summing, we estimate seed mean handling time to be 𝑏̃ = 52.5 

minutes.  This gives a dispersal scale 𝛼 = √𝐷𝑏̃ = 3436.93 m.  Shaw et al., 2005 estimate 

annual mortality at 0.08-0.23% for common pinyon. Taking the mean and converting to a 

rate per generation gives 𝜔 = 0.00155.  Taken together, these parameters give a minimum 

speed of 518.97 m/year and a maximum of 946.1 m/year for pinyon, with an average of 

773.31 m/year. 
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 On the other hand, for juniper we use a generation time G ~ 50 years from Li et al., 

2011. To estimate 𝑅0 we follow Tausch and West (1988), who observed that only 109 

junipers survived the nineteenth-century fire on their site. The number increased to 172 

over the next 145 years giving 𝑅0 = 1.17/generation for juniper from equation (2.33). 

Chavez-Ramirez and Slack (1994) observed that American robins forage in the range of 

10-100 meters with mean  55 meters and average 4 minutes between trees. We therefore 

take 𝜆 = 55 meters and time step 𝜏 = 4 minutes, giving 𝐷 = 189.1 m2/min. Holthuijzen 

and Adkisson (1984) report that the cedar waxwing takes between 7.35 and 22.45 minutes 

to digest red cedar (Juniperus virginiana) seeds; we therefore use a handling time 𝑏̃ = 14.9 

min. These estimates give a dispersal scale 𝛼 = √𝐷𝑏̃ = 53.1 m.  Shaw et al., 2005 estimate 

annual mortality at 0.01-0.07% for Utah juniper (Juniperus osteosperma). Taking the mean 

and converting to a rate per generation gives 𝜔 = 0.0004. Using these parameter ranges 

we find that juniper spreads with minimum speed 0.42 m/year and maximum speed 7.3 

m/year with an average of 3.3 m/year, two orders of magnitude more slowly than pinyon. 

 These results match up well with what is known about these two species and their 

relative movements during the Holocene.  Juniper seems to have been present in the Great 

Basin area for at least 30,000 years, based on evidence from fossilized packrat middens 

(Nowak et al., 1994).  While its range contracted due to climatic shifts there were no 

significant expansions.   By contrast, pinyon pine was limited to Arizona and New Mexico 

up to 9000 years ago, but  migrated up the Wasatch front to the northeastern corner of Utah 

in the next 1000 - 1500 years (Lanner and Devender 1998), which would have required 

speeds in excess of 500 m/year. 
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2.5 Conclusion 

 Mechanisms of plant migration vary based on the source plant and the dispersal 

process  delivering seeds to new locations for germination. Juniper berries mainly disperse 

after being eaten by vertebrates who deposit seeds after digestion.  Birds, particularly 

robins, may be the biggest dispersers.  Seeds of pinyon trees, on the other hand, are 

commonly spread while animals cache, and corvids (jays and nutrcrackers), which cache 

at large distances, are the largest contributors. In this paper, we introduced a PDF of seed-

handling to reflect the effects of digestion/caching on dispersal of pinyon and juniper seeds. 

We connected this distribution to hazard functions or failure rates in an existing random-

walk dispersal model to determine a seed digestion kernel modeling the probable location 

of seeds after active dispersal.  As expected, if birds or animals take more time to handle 

seeds, those seeds are dispersed further away from the source tree. While no closed-form 

solution for the SDK is available, it is easy to calculate numerically (and would only have 

to be calculated once, in advance, for implementation in an IDE model for population 

invasion). 

To evaluate migration potential for pinyon and juniper we introduced an IDE model 

with competition among seedlings, which is appropriate for desert-adapted trees in the 

xeric environment of the American Southwest.  The SDK was compared with well-known 

Laplace and Gaussian kernels (L(x) and G(x)). After standardizing the associated PDFs for 

handling time, the speed of invasion for the SDK was the fastest for shorter handling times 

(rapidly digesting seeds).  As handling times increased, however, the speeds for the SDK 

fell between the Laplace kernels (faster; based on an assumption of constant seed 
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deposition) and the Gaussian kernels (slower; based on the assumption of instantaneous 

seed deposition), as would be expected from the relative behavior of the tails. 

Using the SDK and median parameter values estimated from the literature it turned 

out that pinyon has migration potential at least two orders of magnitude larger than juniper 

due to avian dispersal.  Along with changing temperatures and diminishing moisture levels 

the favorable environment for P-J is moving northwards through Utah.  Over time, these 

trees will not be able to survive in the southern limits of their current habitat. The large 

migration potential of pinyon means that it is most likely to occupy new habitats opening 

to the north. 

Of course, juniper already occupies much of the available northern habitat, and with 

longer generation times and much stronger adaptation to variable moisture regimes juniper 

can be expected to flourish in northern Utah for the foreseeable future.  Moreover, juniper 

may have much higher migration potential than our analysis indicates.  For the slower 

juniper we can probably not ignore mammalian dispersers (Vander Wall 1997) and passive 

dispersal agents (such as runoff and streams for dispersing juniper berries, see Chambers 

et al., 1999). The two main avian juniper dispersers, American robins and cedar waxwings, 

both forage and defecate locally and therefore do not seem to make a large contribution to 

juniper spread.  However, mammals such as foxes, bears and coyotes may disperse juniper 

seeds long distances since they have much longer gut-retention times and can travel more 

than 10 kilometer per day (Willson 1993).  Since juniper seeds persist through winter, 

dispersal by spring runoff can also contribute substantially.  Nevertheless, dispersers like 

pinyon jay and Clark’s nutcracker likely give pinyon the dispersal advantage over juniper. 
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The largest factor ignored in our study is spatial variability.  As Powell and 

Zimmermann (2004) point out, vertebrate dispersers move rapidly through some habitat 

and linger in others, and western landscapes are comprised of highly variable habitat, 

particularly at the leading edge of invasions.  One would expect step sizes in the random 

walks that dispersers follow, and therefore their diffusions rates, to vary strongly with 

habitat type. Recent advances in the use of homogenization (Garlick et al., 2010) make 

integration of reaction-diffusion models with highly variable constants surprisingly easy, 

so building SDKs with variable diffusion and applying asymptotic techniques like 

homogenization will be our future concentration of research. 
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CHAPTER 3 

INVASION SPEEDS WITH ACTIVE DISPERSERS IN HIGHLY VARIABLE 

LANDSCAPES: MULTIPLE SCALES, HOMOGENIZATION, 

AND THE MIGRATION OF TREES 

 

Abstract 

 The distribution of many tree species is strongly determined by the behavior and 

range of vertebrate dispersers, particularly birds. Many models for seed dispersal exist, and 

are built around the assumption that seeds undergo a random walk while they are being 

carried by vertebrates, either in the digestive tract or during the process of seed storage 

(caching). We use a PDF of seed handling (caching and digesting) times to model non-

constant seed settling during dispersal, and model the random component of seed 

movement using ecological diffusion, in which animals make movement choices based 

purely on local habitat type instead of population gradients. Spatial variability in habitat 

directly affects the movement of dispersers and leads to anisotropic dispersal kernels. For 

birds, which can easily move many kilometers, habitat changes on the scale of tens of 

meters can viewed as rapidly varying. We introduce multiple scales and apply the method 

of homogenization to determine leading order solutions for the seed digestion kernel 

(SDK). Using an integrodifference equation (IDE) model for adult trees, we investigate the 

rate of forest migration. The existing theory for predicting spread rates in IDE does not 

apply when dispersal kernels are anisotropic. However, the homogenized SDK is isotropic 

on large scales and depends only on harmonically averaged motilities and modal rates of 
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digestion. We show that speeds calculated using the harmonic average motility accurately 

predict rates of invasion for the spatially variable system. 

 

3.1 Introduction 

 The diffusion equation represents a fundamental framework for determining the 

spatial spread of organisms (Hengeveld 1988, Okubo and Levin 1989, Shigesada et al., 

1995, Skalski and Gilliam 2003, Morales and Carlo 2006). Fisher (1937) studied 

asymptotic rates of invasion of mutant genes and his ideas were extended by Skellam 

(1951) to ecological problems (the spread of animal and plant populations on landscape 

scales). Later on, diffusion equations were used to describe the spread of the cereal leaf 

beetle, muskrat, small cabbage white butterfly (Andow et al., 1990) and dispersal of cholla 

(Allen, 1991). 

 Diffusion models usually assume that animal movement properties are constant in 

space and time, but in fact animals move differently in different habitats. Movement occurs 

while animals search for food, water, breeding sites, mates and shelter. Each of these 

activities is conditioned by habitat type; deer do not linger to forage on barren slick rock, 

and birds eating juniper berries spend a great deal of time foraging on juniper trees but very 

little time in the sagebrush steppe separating stands of juniper.  The movement properties 

of a population are determined by the composition of all landscape elements and the nature 

of the boundaries between them (Moilanen and Hanski, 1998, Haynes and Cronin, 2003, 

Ovaskainen, 2004). 
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 Spatial variation in landscape structure is one of the components that affects the 

mobility of active dispersers. Hanski et al., 2004 have observed that increasing 

environmental heterogeneity increases the variance in mobility of butterflies. Raposo et al., 

2011 have shown that heterogeneous landscape enhances diffusivity and foraging behavior 

of dispersers under the constant density of scarce resources.  Habitat fragmentation is a 

special kind of variability; Dewhirst and Lutscher (2009) have demonstrated that spread 

rate of populations increases in fragmented habitat in the absence of Allee effect (but 

decreases when there is an Allee effect). 

 At population and landscape scales movement is often modeled by Fickian 

diffusion (Reeve et al., 2008), in which population redistribution is driven by population 

gradients. This means that the movement of individuals tends from higher concentrations 

to lower concentrations, and changes in local habitat only alter the movement rate down 

the gradient (Okubo and Levin 2001). However, animal responses to spatial heterogeneity 

are not likely to be Fickian.  When deer bed down at or inside a treeline they do not 

randomly diffuse past the forest edge, and when American robins forage for juniper berries 

they exhibit high fidelity to the location of the trees and simply avoid the surrounding 

steppe, unless they are choosing to move between patches of juniper.  In both of these cases 

the animals are making movement choices based on the patch of habitat in which they 

currently reside, not perceptions of population gradients. A more appropriate way to 

describe animal movement in which organisms make random steps based on current habitat 

types is “ecological diffusion” (Turchin 1998). In this approach differences in population 

dispersion are driven by residence times in differing habitat types. Where residence times 
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are high (in juniper for robins) populations accumulate, and where residence times are low 

(in sagebrush) the population density is low.  An ecological diffusion model supports 

discontinuous solutions at boundaries, consequently, deer can accumulate inside of a forest 

patch without diffusing out into the adjacent meadow against their will. Turchin (1998) 

observed that residence time and motility (the analog of diffusivity) are inversely 

proportional. Thus, if the motility is low in a patch (residence time is high) then individuals 

don’t choose to leave the patch very frequently and the population density increases. 

Seed transport during vertebrate movement happens mainly in two ways. Dispersal 

agents either hide seeds at some distance from the fruiting tree for future use or these agents 

eat seeds and defecate seeds at some new location. When animal motility is independent in 

space, Neubert et al., 1995 have discussed two limiting cases of seed spread. If every 

dispersal agent requires exactly the same amount of time to handle individual seeds, seed 

dispersal on the landscape is Gaussian. On the other hand, if these agents drop seeds at a 

constant rate in both time and space, seed spread in a Laplace distribution. Both extremes, 

however, are unlikely in real life scenarios. Neupane and Powell (2015) hypothesized that 

handling time is sampled from a distribution after seeds are picked. Using a time-dependent 

seed handling function they calculated seed digestion kernels (SDK). Neupane and Powell 

showed that the SDK accurately described seed dispersal for pinyon pine and Utah juniper, 

as reflected in the historical migration rate of these species.  

 Dispersal kernels in spatially variable landscapes have not received much attention. 

Simple analytic solutions don't exist for arbitrarily structured spatial landscapes. Numerical 

approaches are possible, but would require the user to solve the diffusion/settling equations 
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separately for each generation with different initial conditions for each generations’ new 

location of seed sources. The computational cost of this operation would increase 

geometrically with landscape complexity.  If spatial discretization is chosen small enough 

to resolve the smallest landscape features, a general rule to maintain numerical stability is 

that time steps must scale with the square of the size of spatial discretization (Δ𝑡 ≤ 𝐶Δ

𝑥2, Ascher and Greif 2011). Thus the number of computations tends to follow the cube of 

the spatial discretization, becoming unattractive for large, complex landscapes.  

 However, if the scale of spatial variability is very short as compared with the 

movement capacity of individuals, as occurs with vertebrate dispersers of tree seeds and 

berries, it is possible to solve Neubert's system analytically using the method of 

homogenization (Powell and Zimmermann 2004, Garlick et al., 2010). In this multi-scale 

procedure, slow and fast dispersal scales are introduced, linked by an asymptotically small 

order parameter.  Solutions are then described by a regular perturbation series, leading to 

a large-scale solvability condition (the “homogenized equation'') which determines large-

scale solution behavior (Holmes 1995). Powell and Zimmermann (2004) used the 

homogenization technique to analyze active seed dispersal and forest migration in a 

heterogeneous landscape, but these authors were working in a Fickian diffusion framework 

and used constant settling rates instead of sampling the variability in seed handling times. 

On the other hand, Garlick et al., 2013 used homogenization in an ecological diffusion 

model to investigate the spread of chronic wasting disease in mule deer, but again the 

contact rates were assumed to be constant instead of modal.  
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 In this paper we adapt a dispersal model from Neubert et al., 1995 by introducing 

ecological diffusion with highly variable motility and a modal distribution of seed handling 

times. We assume that motility varies on short scales and use multiple scales in space and 

time to apply the method of homogenization for solving the model. Using a solvability 

condition, we derive a simple constant diffusion equation on large scales and approximate 

the SDK. This kernel depends on the harmonic average of the motility. We then embed the 

kernel into an integrodifference equation (IDE) population model for adult plants. The 

large scale diffusion equation depends on small-scale variability only through the 

harmonically averaged motility, which inflicts a large-scale isotropic structure on the 

dispersal kernel.  We hypothesize   that the harmonic average motility therefore predicts 

the invasion speed in spatially complex environments. Analytic and numerical simulation 

methods are used to compare predicted and observed migration speeds. We conclude that 

observed speed converges asymptotically to the predicted constant speed. 

 

3.2 Methods 

3.2.1 Dispersal model on a variable landscape 

 We introduce a modified version of the Neubert et al., 1995 seed dispersal model 

to accommodate ecological diffusion and a distribution of seed handling times for 

vertebrate dispersers of tree seeds. We assume that motility depends only on space, while 

the distribution of seed handling times depends only on time (that is, time required for 

digestion is intrinsic to the dispersers, not the habitat). Thus 

                     𝜕𝑡(𝑃) = 𝜕𝑥
2(𝐷(𝑥)𝑃) − ℎ(𝑡)𝑃,   𝑃(𝑥, 𝑡 = 0) = 𝛿(𝑥 − 𝑥′),                 (3.1)          
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                                        𝜕𝑡(𝑆) = ℎ(𝑡)𝑃,   𝑆(𝑥, 𝑡 = 0) = 0,                                    (3.2)          

where 𝑃(𝑥, 𝑡) represents the density of seeds during dispersal by frugivorous birds and 

animals moving in the variable landscape, 𝐷(𝑥) is the seed motility rate while being carried 

by dispersers and ℎ(𝑡) is the hazard function or rate of seed settling. To model real-world 

variability in the amount of time that seeds spend being carried by dispersers (i.e. 

distribution of times at which seeds are digested and defecated or carried and cached) we 

take ℎ(𝑡) to be a probability density function (PDF) in time (Neupane and Powell 2015).  

Finally, 𝑆(𝑥, 𝑡) is the seed density on the landscape at time 𝑡. The Dirac delta 

function, 𝛿(𝑥 − 𝑥′), gives  initial seed position at 𝑥′ and  𝑆(𝑥, 𝑡 = 0) = 0 because there 

are no seeds dispersed at time 𝑡 = 0. The long-time limit of this process will generate a 

seed digestion kernel (SDK), which is the probability of a seed moving from the starting 

location, x', to a final location on the landscape, x.  The term (𝐷(𝑥)𝑃)𝑥𝑥 was used by 

Turchin (1998) to describe “ecological diffusion” for bird or animal movement based on 

local habitat. We restrict ourselves to one dimension to analyze rates of spread 

perpendicular to a wave of invasion.   

 Following Neupane and Powell (2015), we assume that the PDF of seed handling 

times (digestion or caching) by birds and animals is represented by the distribution  

                                            ℎ(𝑡) =
𝑎 𝑡𝛼

𝑏𝛽+𝑡𝛽
,    𝛽 > 𝛼 + 1 > 0.                                        (3.3)       

Here 𝑏 scales the mean seed handling time and 𝑎 is a normalization constant. Notice that 

ℎ(𝑡)~𝑡𝛼  as 𝑡 ⟶ 0 while ℎ(𝑡)~𝑡𝛼−𝛽 as 𝑡 ⟶ ∞.  

 To find the seed distribution on the landscape associated with the hazard function 

defined in equation (3.3), we need to solve the model (3.1) and (3.2). First, define 𝑓(𝑡) as  
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                                                     𝑓(𝑡) = ∫
𝑎 𝜏𝛼

𝑏𝛽+𝜏𝛽

𝑡

0
 𝑑𝜏,                                                  (3.4)          

so 𝑓′(𝑡) = ℎ(𝑡). Then, equation (3.1) becomes 

                                               𝜕𝑡(𝑃) = 𝜕𝑥
2(𝐷𝑃) − 𝑓′(𝑡)𝑃.                                            (3.5)        

Multiplying on both sides of the equation by the integrating factor, 𝑒𝑓(𝑡), and rearranging 

terms, we arrive at the equation  

                                              
𝜕

𝜕𝑡
(𝑃 𝑒𝑓(𝑡)) = 𝜕𝑥

2(𝐷𝑃 𝑒𝑓(𝑡)) .                                          (3.6)    

If   

                                                             𝑢 = 𝑃𝑒𝑓(𝑡),                                                        (3.7)      

 equation (3.6) becomes 

                                                     𝜕𝑡(𝑢) = 𝜕𝑥
2(𝐷(𝑥)𝑢) .                                                (3.8)        

 

3.2.2 Introduction of multiple scales for highly variable landscapes   

 We introduce multiple scales to model highly variable habitat motility in equation 

(3.8). Let  𝑦, the small scale, be  𝑦 =
𝑥−𝑥′

𝜀
   for some order parameter 0 < 𝜀 ≪ 1. The order 

parameter captures the difference in scale between the patchiness of the landscape and the 

larger scale at which vertebrate dispersers can move.  For example, landcover mapping via 

geographic information systems is generally framed on 30 meter pixels because habitat 

varies on scales of tens of meters.  On the other hand, birds typically fly distances which 

are measured in terms of kilometers, so we would take 𝜀 = 10 meters

1 km
= 0.01 . We assume 

motility varies on both scales, so that  𝐷 = 𝐷(𝑥, 𝑦 =
𝑥−𝑥′

𝜀
) . With the new scales, spatial 

derivatives are rewritten as 
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𝜕𝑥 ⟶
1

𝜀
𝜕𝑦 + 𝜕𝑥 , 

𝜕𝑥
2⟶

1

𝜀2
𝜕𝑦
2 +

1

𝜀
2𝜕𝑥𝜕𝑦 + 𝜕𝑥

2 . 

We must also choose a fast time scale to balance the short space scale. Taking  𝜏 =
𝑡

𝜀2
.  the 

time derivative transforms into 

𝜕𝑡 ⟶
1

𝜀2
𝜕𝜏 + 𝜕𝑡 . 

Applying these transformations to equation (3.8) gives 

                                   (
1

𝜀2
𝜕𝜏 + 𝜕𝑡) 𝑢 = (

1

𝜀
𝜕𝑦 + 𝜕𝑥)

2

[𝐷(𝑥, 𝑦 )𝑢].                                (3.9)   

Assume that the solution can be expanded as a regular asymptotic series, 

                                            𝑢 = 𝑢0 + 𝜀𝑢1 + 𝜀
2𝑢2 + 𝑂(𝜀

3).                                       (3.10)         

Multiplying by 𝜀2, equation (3.9) becomes 

(𝜕𝜏 + 𝜀
2𝜕𝑡)(𝑢0 + 𝜀𝑢1 +⋯) = (𝜕𝑦 + 𝜀𝜕𝑥)

2
[𝐷(𝑥, 𝑦 )(𝑢0 + 𝜀𝑢1 +⋯)], 

which can be expanded  

𝜕𝜏𝑢0 + 𝜀𝜕𝜏𝑢1 + 𝜀
2[𝜕𝑡𝑢0 + 𝜕𝜏𝑢2] + ⋯ = 𝜕𝑦

2(𝐷𝑢0) + 𝜀[𝜕𝑦
2(𝐷𝑢1) +

                              2𝜕𝑥𝜕𝑦(𝐷𝑢0)] + [𝜕𝑦
2(𝐷𝑢2) + 2𝜕𝑥𝜕𝑦(𝐷𝑢1) + 𝜕𝑥

2(𝐷𝑢0)] + ⋯ .        (3.11)  

 

3.2.3 Homogenization technique applied to rescaled seed dispersal model 

3.2.3.1  Solution at 𝑶(𝟏) 

The method of homogenization is essentially to solve the multi-scale expansion (3.11) at 

successive orders of 𝜀, being alert for a solvability condition which will reconcile the 

solution across scales. Equating terms at leading order in (3.11) gives 

                                                  𝜕𝜏𝑢0 = 𝜕𝑦
2(𝐷(𝑥, 𝑦)𝑢0).                                              (3.12)          
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This is a parabolic equation and its solution relaxes exponentially to the steady state on the 

fast time scale. Since we are seeking the long-time limit of the process, we can ignore 

transients, giving   

                                                     𝜕𝑦
2(𝐷(𝑥, 𝑦)𝑢0) = 0.                                                 (3.13)            

The solution of this equation is 

𝑢0 =
𝐶0(𝑥,𝑡)

𝐷(𝑥,𝑦)
+
𝐶1(𝑥,𝑡)

𝐷(𝑥,𝑦)
𝑦. 

Recall that the small scale and dispersal are related as  𝑦 =
𝑥−𝑥′

𝜀
 . In order to have bounded 

solutions as 𝜀 → 0 (that is, |𝑦| → ∞), we require 

                                                          𝑢0 =
𝐶0(𝑥,𝑡)

𝐷(𝑥,𝑦)
 .                                                       (3.14)       

3.2.3.2 Solution at  𝑶(𝜺) 

 Equating the terms at order 𝜀 from the expanded form of equation (3.11) gives 

                                       𝜕𝜏𝑢1 = 𝜕𝑦
2(𝐷(𝑥, 𝑦)𝑢1) + 2𝜕𝑥𝜕𝑦(𝐷𝑢0).                                (3.15)                                           

Using 𝑢0 from (3.14) gives 

2𝜕𝑥𝜕𝑦(𝐷𝑢0) = 2𝜕𝑥𝜕𝑦(𝑐0(𝑥, 𝑡)) = 0. 

Then equation (3.15) gives 

𝜕𝜏𝑢1 = 𝜕𝑦
2(𝐷(𝑥, 𝑦)𝑢1). 

This is again parabolic with exponentially decaying transients on fast time scales. Thus,  

𝜕𝑦
2(𝐷(𝑥, 𝑦)𝑢1) = 0, 

which has solution  

𝑢1 =
𝑑1(𝑥,𝑡)

𝐷(𝑥,𝑦)
+
𝑑2(𝑥,𝑡)

𝐷(𝑥,𝑦)
𝑦. 

Once again, for the solution to be bounded as 𝜀 ⟶ 0, 
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                                                             𝑢1 =
𝑑1(𝑥,𝑡)

𝐷(𝑥,𝑦)
 .                                                       (16)     

 

3.2.3.3 Solvability condition at  𝑶(𝜺𝟐)  

 Equating terms with 𝜀2 from the expanded form of equation (3.11) gives 

                              𝜕𝜏𝑢2 + 𝜕𝑡𝑢0 = 𝜕𝑦
2(𝐷𝑢2) + 𝜕𝑥

2(𝐷𝑢0) + 2𝜕𝑥𝜕𝑦(𝐷𝑢1).                   (3.17)       

From equation (3.16), 𝜕𝑥𝜕𝑦(𝐷𝑢1) =  𝜕𝑥𝜕𝑦(𝑑1(𝑥, 𝑡)) = 0, and using the fact that 02  u

in long time, equation (3.17) gives   

                                             𝜕𝑡 (
𝐶0

𝐷
) = 𝜕𝑦

2(𝐷𝑢2) + 𝜕𝑥
2(𝑐0).                                         (3.18)       

Rearranging terms in equation (3.18) gives 

𝜕𝑦
2(𝐷𝑢2) = 𝜕𝑥

2(𝑐0) − 𝜕𝑡 (
𝐶0

𝐷
). 

Integrating this equation with respect to 𝑦 from −𝑙 to 𝑙,   

                             𝜕𝑦(𝐷𝑢2)|𝑦=−𝑙
𝑦=𝑙

= 𝜕𝑥
2(𝑐0) ∫ 𝑑𝑦

𝑙

−𝑙
− 𝜕𝑡(𝑐0) ∫

1

𝐷

𝑙

−𝑙
𝑑𝑦.                         (3.19)       

As Holmes (1995) points out, the right hand side of this equation grows in proportion to 𝑙 

for arbitrary c0 and bounded, nonzero motility. However, the left hand side is bounded and 

remains small. Thus, equation (3.18) becomes unsolvable unless there is something special 

about c0. To continue the perturbation approach and generate a bounded solution for u2, the 

right hand side must be zero as 𝑙 → ∞; thus we have a stability condition as 𝑙 ⟶ ∞,  

                                          2𝑙 𝜕𝑥
2(𝑐0) − 𝜕𝑡(𝑐0) ∫

1

𝐷

𝑙

−𝑙
𝑑𝑦 = 0.                                       (3.20)         

 Define the average of a function  𝑤 as  

〈𝑤〉 = lim
𝑙→∞

1

2𝑙
∫ 𝑤(𝑦)𝑑𝑦
𝑙

−𝑙
. 
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The second term in the solvability condition can be written 

                                                  〈𝜕𝑡 (
𝑐0

𝐷
)〉 = 〈𝐷−1〉𝜕𝑡𝑐0 ,                                              (3.21)      

 where 𝐷̅ =
1

⟨𝐷−1⟩
, the harmonic average of D and ⟨𝐷−1⟩ gives the average of 𝐷−1. 

From equations (3.18), (3.20) and (3.21) we now have 

                          𝜕𝑡𝑐0 = 𝐷̅(𝑥)𝜕𝑥
2𝑐0;   𝑐0(𝑥, 𝑥

′, 0) = 𝐷(𝑥′, 0) 𝛿(𝑥 − 𝑥′),                     (3.22)          

where  𝐷(𝑥′, 0) is the motility at the seeds’ starting location, 𝑥′. 

 

3.2.4 Solving for seed dispersal 

We assume  𝐷̅ is locally constant, so that the solution to (3.22) can be written  

                                             𝑐0(𝑥, 𝑥
′, 𝑡) =

𝐷(𝑥′,0)

√4𝜋𝐷̅ 𝑡
𝑒
−(𝑥−𝑥′)2

4𝐷̅𝑡  .                                         (3.23)    

From equations (3.10) and (3.14) we have 

                                              𝑢(𝑥, 𝑦, 𝑡)  =
𝑐0(𝑥,𝑡)

𝐷(𝑥,𝑦)
+ 𝑂(𝜀) .                                           (3.24)             

Returning to the original dependent variable, equations (3.7), (3.23) and (3.24) give 

                       𝑃(𝑥, 𝑥′, 𝑦, 𝑡) ≅
𝑐0(𝑥,𝑡)

𝐷(𝑥,𝑦)
𝑒−𝑓(𝑡) =

𝐷(𝑥′,0)

𝐷(𝑥,𝑦)√4𝜋𝐷̅𝑡
𝑒−𝑓(𝑡)𝑒

−(𝑥−𝑥′)
2

4𝐷̅𝑡  ,                  (3.25)             

and returning to unscaled spatial variables we have 

                          𝑃(𝑥, 𝑥′, 𝑡) ≅
𝑐0(𝑥,𝑡)

𝐷(𝑥)
𝑒−𝑓(𝑡) =

𝐷(𝑥′)

𝐷(𝑥)√4𝜋𝐷̅𝑡
𝑒−𝑓(𝑡)𝑒

−(𝑥−𝑥′)
2

4𝐷̅𝑡 ,                      (3.26)          

where 𝐷(𝑥) = 𝐷(𝑥, 0) and 𝐷(𝑥′) = 𝐷(𝑥′, 0). 

Integrating equation (3.2) using (3.26),  

𝑆(𝑥, 𝑥′, 𝑡) ≅
𝐷(𝑥′)

𝐷(𝑥)
∫ (

ℎ(𝑡′)

√4𝜋𝐷̅𝑡′
𝑒−𝑓(𝑡

′)𝑒
−(𝑥−𝑥′)

2

4𝐷̅𝑡′ )
𝑡

0

𝑑𝑡′ 
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                                     =
𝐷(𝑥′)

𝐷(𝑥)
∫ (

ℎ(𝑡′)

√4𝜋𝐷̅𝑡′
𝑒−∫ ℎ(𝜏)𝑑𝜏

𝑡′

0 𝑒
−(𝑥−𝑥′)

2

4𝐷̅𝑡′ )
𝑡

0
𝑑𝑡′.                          (3.27)                                                           

 

3.2.5 Homogenized seed dispersal kernel 

Equation (3.27) is the homogenized solution of (3.2) in the long time scale 𝑡 and 

the seed digestion kernel is the long time limit of this solution. Thus the homogenized seed 

digestion kernel (HSDK) becomes 

             𝐾(𝑥, 𝑥′) ≅ lim
𝑡→∞

𝑆(𝑥, 𝑥′, 𝑡) =
𝐷(𝑥′)

𝐷(𝑥)
∫ (

ℎ(𝑡)

√4𝜋𝐷̅𝑡
𝑒−∫ ℎ(𝜏)𝑑𝜏

𝑡
0 𝑒

−(𝑥−𝑥′)2

4𝐷̅𝑡 ) 𝑑𝑡
∞

0
 .          (3.28)          

The terms 𝐷(𝑥) and 𝐷(𝑥′) denote dispersal motilities at the starting and ending locations, 

respectively. Note that, while the homogenization approach has made the form of this 

solution fairly simple, it is not guaranteed to be a PDF in space; normalization is necessary 

before (3.28) can be used for seed dispersal (as we will discuss below). Consider the effect  

of the quotient 
𝐷(𝑥′)

𝐷(𝑥)
 on the shape of the kernel. If  𝐷(𝑥′)  is high, the quotient 

𝐷(𝑥′)

𝐷(𝑥)
 is 

relatively large and more seeds will disperse from the starting location. On the other hand, 

at some target location, x, if D(x) is large then residence times are very small at x; the 

quotient is correspondingly small and it is difficult for seeds to end up near x. The shape 

of dispersal kernel with variable motility is shown in Figure 3.1.  Now  we consider two 

limiting cases which generate closed form HSDK.  
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Figure 3.1 This plot gives the shape of seed digestion kernel (dotted line) with constant 

motility 𝐷̅ versus the homogenized seed digestion kernel (solid) with variable motility. The 

jaggedness of the homogenized curve is generated by random variations in motility, 𝐷(𝑥), 
on short spatial scales. We have chosen 𝐷 from a uniform distribution between 𝐷𝑚𝑖𝑛 = .01 

and 𝐷𝑚𝑎𝑥 = .04, assumed to be constant for each grid cell (of size ∆𝑥 = 0.2). We further 

have chosen the dispersal starting location 𝑥′ = 0. 

 

3.2.6 Homogenized Gaussian dispersal kernel 

Based on Neupane and Powell (2015), when there is no variability in handling times, the 

function ℎ(𝑡) becomes 

                                                       ℎ(𝑡) = 𝛿(𝑡 − 𝑏̃).                                                   (3.29)           

Then (3.28) can be integrated directly,   

𝐺(𝑥, 𝑥′) =
𝐷(𝑥′)

𝐷(𝑥)
∫ (

𝛿(𝑡−𝑏̃)

√4𝜋𝐷̅𝑡
𝑒−∫ 𝛿(𝜏−𝑏̃)𝑑𝜏

𝑡
0 𝑒

−(𝑥−𝑥′)
2

4𝐷̅𝑡 )𝑑𝑡
∞

0
=

𝐷(𝑥′)

𝐷(𝑥)√4𝜋𝐷̅𝑏̃
𝑒
−(𝑥−𝑥′)

2

4𝐷̅𝑏̃ .          (3.30)             
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Figure 3.2 This graph shows the Gaussian kernel (dotted line) with constant motility 𝐷̅ vs 

the homogenized Gaussian kernel (solid) with variable motility. The jaggedness of the 

homogenized curve is generated from the smooth Gaussian by random variations in 

motility, 𝐷(𝑥), on short spatial scales. We have chosen 𝐷 from an uniform distribution 

between 𝐷𝑚𝑖𝑛 = .01 and 𝐷𝑚𝑎𝑥 = .04, assumed to be constant for each grid cell (of size 

∆𝑥 = 0.2). We have chosen the dispersal starting location 𝑥′ = 0. 

 

This is a homogenized version of the Gaussian kernel, depicted in Figure 3.2.  Note that 

the skeleton of the HDSK is a normal PDF in space with 𝜎2 = 2𝐷̅𝑏̃, modulated up and 

down by the relative motilities at the starting and ending locations. If motility is constant, 

G(x, x') reduces to the standard Gaussian SDK. 

 

3.2.7 Homogenized Laplace dispersal kernel 

Another analytic limit comes from taking the PDF ℎ to be a step function, 
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where 
~

b  is the mean handling time; the hazard function is written this way to facilitate  

comparison with the more general SDK.  It was shown in Neupane and Powell (2015) that   

the solution to model (3.1) and (3.2) with the step function (3.31) can be approximated by  

                         𝜕𝑡(𝑃) = 𝜕𝑥
2(𝐷(𝑥)𝑃) −

1

2𝑏̃
𝑃, 𝑃(𝑥, 𝑡 = 0) = 𝛿(𝑥 − 𝑥′),                    (3.32)            

                                           𝜕𝑡(𝑆) =
1

2𝑏̃
𝑃, 𝑆(𝑥, 𝑡 = 0) = 0.                                        (3.33)          

  
Figure 3.3 This graph shows the Laplace kernel (dotted line) with constant motility 𝐷̅ vs 

the homogenized Laplace kernel (solid) with variable motility. The jaggedness of the 

homogenized curve is generated from the smooth Laplace kernel by random variations in 

motility, 𝐷(𝑥), on short spatial scales. We have chosen 𝐷 from an uniform distribution 

between 𝐷𝑚𝑖𝑛 = .01 and 𝐷𝑚𝑎𝑥 = .04, assumed to be constant for each grid cell (of size 

∆𝑥 = 0.2).and The dispersal starting location is 𝑥′ = 0. 

 

Replacing ℎ with the constant 
1

2𝑏̃
 in (3.28),  

𝐿(𝑥, 𝑥′) =
𝐷(𝑥′)

𝐷(𝑥)
∫ (

1

2𝑏̃

√4𝜋𝐷̅𝑡
𝑒
−
𝑡

2𝑏̃ 𝑒
−|𝑥−𝑥′|

4𝐷̅𝑡 )𝑑𝑡
∞

0
. 

This latter integral can be evaluated (Neupane and Powell 2015) to give 

                                              𝐿(𝑥, 𝑥′) =
𝐷(𝑥′)

𝐷(𝑥)2 √2𝐷̅𝑏̃
𝑒
−|𝑥−𝑥′|

√2𝐷̅𝑏̃ .                                         (3.34)           
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This is a homogenized Laplace kernel, depicted in Figure 3.3. Note that the skeleton of this 

distribution is a Laplace PDF in space with mean dispersal distance √𝐷̅𝑏̃, modulated up 

and down by the relative motility at starting and ending locations. 

 

3.2.8 A population model for adult plants 

 We would like to understand how spatial variability affects the effective migration 

rates of plants, based on the seed distribution we estimated in equation (3.28). We introduce 

a simple population model which includes spatially varying dispersal, 

         𝑁𝑛+1 = 𝑇[𝐾(𝑥, 𝑥′) ∗ 𝑘 𝑁𝑛(𝑥)]⏟              
Newly dispersed survived seeds to germinate

+ (1 − ω)𝑁𝑛(x)⏟        
Survived old adults

      (3.35)              

where  𝑁𝑛 is the population density of adults in generation n, 𝐾(𝑥, 𝑥′) gives the dispersal 

kernel, 𝑘 is the number of seeds produced per adult per generation, 𝜔 gives the mortality 

probability of adults per generation, and 

𝑇 =
𝑀 𝑔 𝜎 𝑁𝑛
𝑀 +  𝑁𝑛

 

is the Beverton-Holt model for the number of seedlings surviving in competition with other 

seedlings after germination. In this model, 𝑔 is the germination rate, 𝜎 is the seed survival 

rate and  𝑀 is the maximum density of surviving seeds.  The convolution in (3.35) is 

defined by  

                               𝐾(𝑥) ∗ 𝑘 𝑁𝑛(𝑥) = ∫ 𝐾(𝑥, 𝑥′) 𝑘 𝑁𝑛
∞

−∞
(𝑥′)𝑑𝑥′.                            (3.36)           

Notice that the dispersal kernel derived in equation (3.28) is anisotropic.  Consequently the 

integrodifference equation (3.35) can not be evaluated rapidly from generation to 



59 

 

 

 

generation using Fast Fourier Transforms; as it stands the convolution must be evaluated 

numerically at every location using direct quadrature.  

 

3.2.9 Invasion speed estimation 

 We use the population model (3.35) to estimate the speed of invasion in a variable 

landscape. Since the dispersal kernel is anisotropic we can't evaluate invasion speeds 

directly by following the method of Kot et al., 1996.  However, the homogenized solutions 

have large scale structure which is isotropic, with spatial parameters determined by the 

harmonic average (𝐷̅) of  𝐷. We therefore hypothesize that the speeds can be predicted 

using the isotropic kernel and the harmonic average motility.  That is, for purposes of 

predicting speeds we will use the isotropic dispersal kernel, 𝐾̅(𝑥 − 𝑥′) which provides the 

skeleton of the HDSK: 

𝐾(𝑥, 𝑥′) =
𝐷(𝑥′)

𝐷(𝑥)
𝐾̅(𝑥 − 𝑥′)  =

𝐷(𝑥′)

𝐷(𝑥)
∫ (

ℎ(𝑡)

√4𝜋𝐷̅𝑡
𝑒−∫ ℎ(𝜏)𝑑𝜏

𝑡
0 𝑒

−(𝑥−𝑥′)2

4𝐷̅𝑡 ) 𝑑𝑡
∞

0
 . 

Here 𝑏̃ is the mode of h(t), which we use to facilitate comparison among the various kernels 

(see Neupane and Powell 2015 for details).  

 We outline the method of Kot et al., 1996. Far in advance of the wave of invasion 

we assume that population density approaches zero as 𝑥 → ∞,  

                                                         𝑁𝑛(𝑥)~𝜀𝑒
−𝑢𝑥 ,                                                    (3.37)            

with 𝜀 ≪ 1 (note this is not the ε from homogenization). At a constant speed of invasion, 

𝑐, the spreading population can be written as 

                                                  𝑁𝑛+1(𝑥) = 𝑁𝑛(𝑥 − 𝑐) .                                              (3.38)           

Equations (3.37) and (3.38) give  
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                                                   𝑁𝑛+1(𝑥) = 𝜀𝑒
−𝑢(𝑥−𝑐).                                               (3.39)          

Putting this all into equation (3.35),  

                         𝜀𝑒−𝑢(𝑥−𝑐)~ 𝑇[𝐾̅(𝑥 − 𝑥′) ∗ 𝜀 𝑘 𝑒−𝑢𝑥] + 𝜀(1 − 𝜔) 𝑒−𝑢𝑥.                    (3.40)      

Applying a Taylor expansion for 𝑇(∙) (and observing T(0)=0), 

                   𝑒−𝑢(𝑥−𝑐)~ 𝑘𝑇′(0)𝐾̅(𝑥 − 𝑥′) ∗ 𝑒−𝑢𝑥 + (1 − 𝜔)𝑒−𝑢𝑥  + 𝑂(𝜀).                (3.41)         

Equating leading order terms of equation (3.41) gives 

                              𝑒−𝑢(𝑥−𝑐) = 𝑅0𝐾̅(𝑥 − 𝑥
′) ∗ 𝑒−𝑢𝑥 + (1 − 𝜔)𝑒−𝑢𝑥,                         (3.42)         

where 𝑅0 = 𝑘𝑇
′(0) = 𝑘𝑔𝜎 is the net reproductive rate. 

 The moment generating function, 𝑀, of the skeletal dispersal kernel is defined as 

                                               𝑀(𝑢) = ∫ 𝐾̅(𝑣)𝑒−𝑢𝑣 
∞

−∞
𝑑𝑣                                           (3.43)      

and thus we arrive at a dispersion relation relating 𝑐 and 𝑢, 

                                               𝑒𝑐𝑢 = 𝑅0𝑀(𝑢) + (1 − 𝜔),                                           (3.44)       

from which 

                                                       𝑐 =
𝑅0𝑀

′(𝑢)

𝑅0𝑀(𝑢)+(1−𝜔)
.                                                  (3.45)       

Using (3.44) to eliminate 𝑐 we get a single equation whose roots determine 𝑢, 

                        𝐹(𝑢) = 𝑢
𝑅0𝑀

′(𝑢)

𝑅0𝑀(𝑢)+(1−𝜔)
− log[𝑅0𝑀(𝑢) + (1 − 𝜔)] = 0.                    (3.46)       

The moment generating function and its derivative can be calculated numerically using the 

trapezoid rule; roots of 𝐹 are found numerically using fzero in MATLAB.  The numerical 

roots then generate the speed of invasion from equation (3.45). 
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3.3 Results 

 For constant motility Neupane and Powell (2015) have already calculated invasion 

speeds for the Beverton-Holt population model.  Speeds of the SDK fall between speeds 

generated by the Gaussian and Laplace dispersal kernels for large 𝑏̃ while for smaller 𝑏̃  

the fact that ℎ(𝑡) is not compactly supported make the speeds of SDK invasions higher 

than either Gaussian or Laplace invasions. Here we test whether the speeds predicted using 

the skeletal kernel, 𝐾̅, and harmonic motility, 𝐷̅, accurately predict speeds resulting from 

simulated invasions with highly variable motility 𝐷(𝑥).   

  

3.3.1 Simulating invasions using the homogenized population model 

3.3.1.1 Evaluating HSDK numerically  

 To resolve HSDK numerically, we calculate the integral (3.28) using the trapezoid 

rule in 𝑥 at every starting location 𝑥′ and save these values, giving the kernel at different 

locations. The kernels calculated in this way are accurate to 𝑂(𝜀 ≈ .01) but may not be 

PDFs because the homogenization procedure does not necessarily preserve the norm. We 

therefore normalize the kernels numerically. Boundaries must be carefully handled in this 

calculation. The mean variance of seeds during dispersal is 𝜎 = √2𝐷̅𝑏̃.  For a Gaussian 

distribution this means that 99.7% of dispersed seeds fall within 3𝜎 of their starting 

location (Casella and Berger, 2001). Outside this boundary seed dispersal is negligible. For 

a simulation domain 𝑥 ∈ (−𝐿, 𝐿) we choose (−𝐿 + 3𝜎, 𝐿 − 3𝜎) as our computational 

domain. This creates two buffer zones on either end of the simulation domain. Seeds may 

disperse into the buffer zone, but seeds are not allowed to disperse out of the buffer zone.  
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Thus dispersal kernels need not be calculated inside the buffer zones, where they can not 

be normalized.  The harmonic average motility,  

𝐷̅ =
1

2𝑙
∫

1

𝐷(𝑦)

𝑥′+𝑙

𝑥′−𝑙
𝑑𝑦, 

is calculated numerically using the trapezoid rule with 𝑙 = min(3𝜎, 10).  

  
Figure 3.4 The top figure shows the invasion front wave simulated up to 20 generations. 

The dotted isocline meets with each wave giving a corresponding distance in space. In the 

bottom figure the last ten distances are fit to a line; the slope of this line gives the observed 

speed of invasion. 

 

3.3.1.2 Numerical simulation and invasion speed diagnosis  

 To estimate invasion speed, we run the simulation for 20 generations and then 

identify the isocline Nn = 1, where  Nn is the population after n generations (see Figure 3.4, 

top). In each generation we measure the farthest forward distance along the isocline.  The 

last ten of these distances is fit to a line using regression; the diagnosed wave speed, 𝑐𝑜𝑏𝑠, 

is the slope of this line (Figure 3.4, bottom).  
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3.3.2 Speed comparison  

   We have chosen 𝐷 = .01 + .02 ∗ [{
1+cos(

2𝜋𝑥

2
)

8
}]

2

 in the simulation so that all 

simulations have the same motility structure regardless of discretization. For  𝑏̃ between 1 

and 20 we compare observed speeds computed using the HSDK in (3.35) with predicted 

speeds using the harmonic average motility, 𝐷̅. As might be expected on dimensional  

  
Figure 3.5 The solid line gives the speeds with seed digestion kernel. This kernel is 

estimated analytically from dispersal model for constant motility rate. The dotted line 

indicates the speeds with the kernel from numerical simulation using the harmonic average 

of variable motility rate.  The graph shows that both speeds are closely increasing in the 

same pattern as mean digestion time scaling parameter 𝑏 increases. 

 

grounds, the predicted speed scales with  √𝐷̅𝑏̃ .   However, in spite of the high variability 

of 𝐷(𝑥), observed invasion speeds conform closely to the predictions using homogenized 

motility (see Figure 3.5). 

 While predicted and observed speeds are close, they are not precisely the same.  

There are two sources of error, one in diagnosing the observed speeds using linear 

regression (which should be of size ∆𝑥 = 0.1 and unbiased) and the other due to 
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convergence in time.  Based on Kot and Neubert (2008),  observed speeds should converge 

from below at a rate like 
1

𝑛
 log√2𝜋𝑛𝑐1  (with 𝑐1 a constant, see Kot and Neubert (2008) 

equation (52)). To test that observed speeds are actually converging to predicted speeds we 

performed a convergence study at 𝑏 ̃ = 4, running the same simulation for between 10 and 

30 generations (results depicted in Figure 3.6).    Results indicate that the observed invasion 

speeds are converging to predicted speeds as expected. 

 
Figure 3.6 The solid (-) horizontal line represents the invasion speed predicted (𝑐∗) from 

the analytic solution of dispersal model. The dotted line (…) gives the speed estimated 

(𝑐𝑜𝑏𝑠) from numerical simulation. As the number of generations increases, the simulated 

speed approaches the predicted speed at a rate like 1/n, per Kot and Nuebert (2008). 

 

 

3.4 Conclusion 

 

 Landscape variability is one of the factors that directly affects the motility of 

dispersers.  Consequently, seed dispersal by active dispersers varies considerably with 

habitat structure within the landscape. In this paper we have adapted an existing model for 

active seed dispersal to highly variable landscapes, introducing ecological diffusion (so 

that disperser motility depends on habitat type alone) and modal seed handling times.  We 
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introduce multiple scales to resolve the effect of rapidly varying habitats and solve the 

dispersal model using the method of homogenization. The resulting homogenized seed 

digestion kernel has asymptotically correct large scale isotropic structure conditioned by 

the harmonic average motility (𝐷̅) and appropriate anisotropic small scale variation for 

seed dispersal reflecting highly variable habitat.  This represents a significant advance.  

Using the formulae derived here analytic predictions for seed dispersal can be generated 

for arbitrary (but highly variable) landscapes; previously the only available methods would 

have been tedious and unwieldy numerical computations. 

 We have also used the homogenized dispersal kernels to calculate rates of invasion 

in variable landscapes.  Using a simple integrodifference equation for adult plants, we 

include the effects of spatial variability via convolution of the anisotropic dispersal kernels.   

No general results exist for predicting a priori spread rates of adult plants in such 

circumstances.  However, we observe that the homogenized kernels have isotropic large-

scale structure, conditioned on the small scale only through the harmonically averaged 

motility.  Using existing theory for predicting spread rates for isotropic dispersal kernels 

we predict rates of invasion in the IDE model using 𝐷̅ and compare with simulated 

invasions for the IDE and spatially complicated dispersal.  Our results show that the a 

priori predictions using 𝐷̅ accurately predict observed invasions, and a convergence study 

shows that the simulated fronts converge inversely with the number of generations, as 

predicted by the isotropic theory.  This represents a second novel contribution; rates of 

invasion can now be predicted in arbitrary, rapidly-varying environments. 
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CHAPTER 4 

CONNECTING REGIONAL-SCALE TREE DISTRIBUTION MODELS WITH 

SEED DIGESTION KERNELS 

 

Abstract 

 Regional scale forest distribution models are important tools for biogeography and 

understanding the structure of forest communities in space. These models take climate and 

geographic variables as input and are therefore helpful for long-term decision support and 

climate adaptation planning.  Generally local processes of germination and seedling 

survival are resolved probabilistically with explanatory variables such as elevation, 

latitude, exposure, soil type, moisture availability, climate and weather inputs and `trained' 

using landscape and regional presence-absence data.  As far as possible without detailed 

site-level mechanistic processes, these models accurately reflect the fate of seedlings after 

seeds have arrived at a site.  How seeds are distributed in these models, however, is far 

more problematic since it is difficult to accurately parameterize dispersal models using 

large-scale presence-absence data, particularly for actively dispersed tree species. The 

challenge is that variables conditioning vertebrate seed dispersal (motility and probability 

of utilization or caching in response to cover type) are not represented in large scale 

distribution models, and in fact vary on scales (10-100 meters) that are much smaller than 

the smallest pixel size for the distribution model (1-10 kilometers).  The homogenized seed 

dispersal kernel (HSDK) offers a tool to make use of this scale separation. Homogenization 

naturally links highly variable small-scale processes (like seed foraging and caching by 
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birds and rodents) with large scale effects (like dispersal of seeds over tens of 

kilometers).  In this paper we develop scenarios for seed dispersal on landscape scales, 

linking small-scale variables (landscape fraction cover by tree type, residence time spent 

and cover type utilization by frugivorous birds) with dispersal probabilities on large scales 

as predicted by HSDKs. 

 

4.1 Introduction 

 Fleshy fruits are the primary food source for many frugivorous birds, mammals and 

rodents (Howe 1986).  These animals make a major contribution to fruiting tree migration 

(Howe and Smallwood 1982, Schupp et al., 2010). They either eat fruits and defecate seeds 

in the landscape or cache fruits at some distance from source trees for future use. In a 

favorable environment these transported seeds may germinate and grow to adulthood, 

moving a forest boundary large distances. 

 There is an interaction between movement of frugivorous birds and fruiting plants 

and it affects the pattern of dispersal based on available resources and habitat structure. 

Seed dispersal of fruiting plants is sensitive to existing variable habitat types at many 

scales. Garcia et al., 2011 observed animal responses toward fruiting tree resource 

availability and structure of habitats at different spatial scales. They found that seed 

distribution due to birds was more responsive to habitat features than to resource 

availability. Seeds mostly end up in the same habitat type as they start due to bird foraging.  

Carlo et al., 2013 found that the rate of seed dispersal is higher in habitat types occupied 

with tree cover of fleshy fruits than to the habitat type with other tree cover or to the open 

pastures. Long distance dispersal is less likely in habitat with many fruiting trees (Herrera 
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et al., 2011). The nature of dispersal also influences fruit-removal rates and therefore the 

number of seeds dispersed from the parent plant (Clark et al., 1999). Carlo and Morales 

(2008) found that higher densities of birds and fruiting plants increase fruit removable rates 

and decreases dispersal distances. They also observed that there is shorter dispersal 

distances by birds in heterogeneous landscape compared to homogeneous ones.  

 Many ecologists have estimated that the shifting of fruiting tree species to new 

habitats depends on environmental explanatory variables such as temperature, moisture 

availability and soil properties. To estimate tree shifting over time, different types of data 

such as geographic information data, soil data, tree mortality data and climate station data 

are used (Peterman et al., 2012, Coops et al., 2012, Syphard and Franklin 2009, McKenney 

et al., 2007). To project the future shifting of pinyons and junipers in the Western US, 

Gibson et al., 2013 used climatic, topographic and presence-absence data existing in big 

grids (approximately 2400 ha. in area of each grid) for these species.  Soil type that is 

capable of absorbing required water, adaptation to changing climate or drought tolerance 

explain the successful occurrence of these tree species in the landscape (Mathys et al., 

2014). 

Edith and Leathwick (2009) have defined species distribution models (SDMs) as 

“the models that relate species distribution data (occurrence or abundance at known 

locations) with information on the environmental and/or spatial characteristics of those 

locations. These models can be used to provide understanding and/or to predict species 

distribution across a landscape.” To project future spread of plants and animals, the use of 

species distribution models has increased drastically (Guisan and Thuiller 2005, Lobo et 
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al., 2010). These models mainly depend on species presence/absence data and 

environmental predictor variables (maximum summer temperature, minimum winter 

temperature, precipitation, land cover, distance of intermittent water, distance of perennial 

water, distance of agricultural zone and distance of human modified area). Model 

prediction accuracy is primarily based on the appropriate choice of variables (Menke et al., 

2009, Araujo and Guisan 2006). Many ecologists use climate data, soil type data and 

landscape use data in species distribution models (Peters et al., 2013, Menke et al., 2009 

and Luoto et al., 2007). Araujo and Guisan (2006) demonstrated that climate predictors can 

be used to project species distribution accurately. Barbet-Massin and Jetz (2014) observed 

that climate predictors can provide accurate results for bird distributions. However, Austin 

and Van Niel (2011) concluded that climatic and non-climatic predictors are equally 

important and need to be tested at high resolution in order to achieve projection accuracy. 

There is no consistency in the spatial resolution (from 1 km2 to 2500 km2) used 

in species distribution models (Gibson et al., 2013, Sanchez-Fernandez et al., 2011, Luoto 

et al., 2007, Austin and Van Niel 2011). Scales are often chosen due to database 

management, computational efficiency or data availability constraints as opposed to 

mechanistic or biological concerns, even though grid size creates uncertainties in the 

resulting projected distribution. Data with fine resolution may not match with 

environmental factors appropriately. On the other hand, it is more likely to overestimate 

while taking the data with broad spatial scale resolution (Wiens et al., 2009).  However, 

almost always the scale of distribution model grids is much larger than the resolution of 

habitat variability which influences vertebrate motion. 



73 

 

 

 

This makes the use of seed dispersal kernels, which describe the probability of 

seeds moving from one cell to another, very problematic in species distribution models.  It 

is difficult to accurately parameterize dispersal models using large-scale presence-absence 

data, particularly for actively dispersed tree species. The migration of fruiting trees 

normally occurs when birds transport seeds from parent plants to new sites (Gosper et al., 

2005, Renne et al., 2002, Glyphis et al., 1981). Birds either eat fruits, digest them and 

defecate seeds somewhere on the ground or cache fruits in the landscape for future use. 

Seeds settled either way in the landscape might germinate and grow as new trees. Powell 

and Zimmermann (2004) modelled seed spread controlled by active agents, including the 

preferential movement of seeds toward caching sites. The scale of habitat patches is tens 

of meters, but birds can easily fly kilometer every easily. This behavior generates spatial 

dependence on small scales with modulation on large scales. This multi-scale dependence 

is perfectly suited to the method of homogenization (Garlick et al., 2010). In principle, 

dispersal kernels generated via homogenization can accurately represent the large scale 

modulation of dispersal probabilities while incorporating small-scale habitat features.  

Neupane and Powell (2015) used homogenization to estimate the shape of transported 

seeds distribution (the seed digestion kernel, SDK) by frugivorous birds in a variable 

landscape. However, the technique was applied in only one dimension and dispersal was 

assumed to be continuous on the large scale.  To connect homogenized SDK with the need 

to describe dispersal discretely on very large grids we need to explicitly homogenize the 

underlying ecological diffusion model for seed transport in two dimensions with large grids 

in mind. 
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 In this paper we modify the existing seed dispersal model to reflect animals’ 

utilization of landscape and their space-dependent motility, using an ecological diffusion 

and variable seed handling time model. The homogenization technique will be used to 

solve this model assuming that habitat variability is reflected on 30m scales but dispersal 

is to be resolved on kilometer-scale grids. This generates a simple diffusion equation on 

large scales which describes large scale modulation of dispersal probabilities, depending 

on parameters that are defined only on the large grid. The solution is a dispersal kernel 

including both small scale variability with motility and utilization.  We connect this kernel 

to discrete large-scale dispersal by integrating over large cells, estimating dispersal 

probabilities that depend on summed landscape cover fractions residence time spent in 

different cover types, and cover type utilization by frugivorous.  Finally, explicit solutions 

in the constant and uniform handling time limits are derived and solution behavior explored 

on randomly generated landscapes.  

 

4.2 Methods 

4.2.1 Seed Dispersal Model  

 We have adapted the dispersal model of Neubert et al., 1995 to the case of 

ecological diffusion, variable utilization of space and a distribution of handling times. The 

model is expressed as 

                       𝑃𝑡 = ∇
2(𝐷(𝒙)𝑃) − 𝑈(𝒙)ℎ(𝑡)𝑃,   𝑃(𝒙, 𝑡 = 0) = 𝛿(𝒙 − 𝒙′),                  (4.1)          

                                          𝑆𝑡 = 𝑈(𝒙)ℎ(𝑡)𝑃,   𝑆(𝒙, 𝑡 = 0) = 0,                                     (4.2)       
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where 𝑃(𝒙, 𝑡) (function of a spatial vector 𝒙 = (𝑥1, 𝑥2) and time 𝑡) is the density of seeds 

during dispersal by birds and animals moving in the landscape, ∇2=
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 is the 

Laplacian differential operator, 𝑈(𝒙) is the utilization function (one if dispersers use the 

habitat at x for seed storage/defecation, otherwise zero), 𝐷(𝒙) is the seed motility rate, and 

𝑆(𝒙, 𝑡) gives the seed density on the landscape at time 𝑡. The Dirac delta function, 𝛿(𝒙 −

𝒙′), gives an initial seed position at 𝒙′, while 𝑆(𝒙, 𝑡 = 0) = 0 because no seeds are 

dispersed initially.  The hazard function ℎ(𝑡) represents failure rate of seeds (i.e. 

distribution of times at which seeds are digested and defecated or carried and cached). The 

term ∇2(𝐷(𝒙)𝑃) was used by Turchin (1998) to describe “ecological diffusion”, random 

walk movement in which movement choices are make solely on the basis of current habitat, 

as is appropriate for birds or animals foraging for fruits and nuts. Turchin (1998) pointed 

out that animal motility and residence time per area are inversely related, so frugivorous 

birds have long residence time in habitats with fruits available, leading to small  motility, 

𝐷(𝒙).  

Dispersers spread seeds either by caching seeds or defecation on the ground; both 

activities have require some handling time sampled from a modal distribution. To model 

this temporal variability, Neupane and Powell (2015) defined a probability density function 

(PDF), ℎ(𝑡), as 

ℎ(𝑡) =
𝑎 𝑡𝛼

𝑏𝛽+𝑡𝛽
 ,    𝛽 > 𝛼 + 1 > 0, 

where 𝑏 is the seed handling time scaling parameter and 𝑎 is a normalization constant. 
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4.2.2 Solving the seed dispersal model 

 To solve the model (4.1) and (4.2), we introduce multiple scales and use the 

homogenization technique (Holmes 1995, Garlick et al., 2010). Let 

                                                     𝜆(𝒙, 𝑡) = 𝑈(𝒙)ℎ(𝑡),                                                  (4.3)          

then the model (4.1) and (4.2) becomes 

                         𝑃𝑡 = ∇
2(𝐷(𝒙)𝑃) − 𝜆(𝒙, 𝑡)𝑃,   𝑃(𝒙, 𝑡 = 0) = 𝛿(𝒙 − 𝒙′),                     (4.4)           

                                           𝑆𝑡 = 𝜆(𝒙, 𝑡)𝑃,   𝑆(𝒙, 𝑡 = 0) = 0.                                        (4.5)        

Species distribution models operate on scales of kilometers, and we define the smallest 

pixel of such a model as a “big” grid cell. Landscape classification, on the other hand, 

commonly occur on 30 × 30 meter blocks. On these short scales we assume habitat types 

are homogeneous and consequently bird foraging parameters are constant. Based on this 

hypothesis we introduce an order parameter, 𝜀 =
30 m

1000 m
=
short scale

long scale
, the ratio of spatial 

scales. Let 𝒚 =
𝒙−𝒙′

𝜀
 be the small scale spatial variable, 𝒙 is the large scale space variable. 

The motility 𝐷 = 𝐷(𝒙, 𝒚 =
𝒙−𝒙′

𝜀
) becomes  a function of both small and large scale space 

variable, since motility changes with habitat type (small scales) as well as landscape 

properties (long scale). Then spatial derivatives transform, 

∇𝑥⟶ ∇𝑥 +
1

𝜀
∇𝑦, 

∇𝑥
2⟶

1

𝜀2
∇𝑦
2 +

1

𝜀
 2 ∇𝑥. ∇𝑦 + ∇𝑥

2. 

We also introduce a short time scale,  𝜏 =
𝑡

𝜀2
 to match the small spatial scale. Then time 

derivatives transform, 
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𝜕𝑡 ⟶
1

𝜀2
𝜕𝜏 + 𝜕𝑡 . 

Applying these transformations in equation (4.4) gives 

                     (𝜕𝜏 + 𝜀
2𝜕𝑡)𝑃 = (∇𝑦 + 𝜀∇𝑥). [(∇𝑦 + 𝜀∇𝑥)𝐷(𝑥, 𝑦)𝑃] − 𝜀

2𝜆𝑃.                 (4.6)            

Assuming the solution for 𝑃 may be expanded as a regular asymptotic series, 

                                             𝑃 = 𝑃0 + 𝜀𝑃1 + 𝜀
2𝑃2 + 𝑂(𝜀

3),                                        (4.7)          

equations (4.6) and (4.7) give 

𝜕𝜏𝑃0 + 𝜀𝜕𝜏𝑃1 + 𝜀
2[𝜕𝑡𝑃0 + 𝜕𝜏𝑃2] + ⋯ = ∇𝑦

2(𝐷𝑃0) + 𝜀[∇𝑦
2(𝐷𝑃1) +

            2 ∇𝑥. ∇𝑦(𝐷𝑃0)]+𝜀
2[∇𝑦

2(𝐷𝑃2) +  2 ∇𝑥. ∇𝑦(𝐷𝑃1) + ∇𝑥
2(𝐷𝑃0) − 𝜆𝑃0] + ⋯ .       (4.8)           

            We assume that 𝐷 is quasi-periodic on small scales, that is, there exists a vector  

𝒑(𝒙) = (𝑝1, 𝑝2), such that  

𝐷(𝒙, 𝒚 + 𝒑(𝒙)) = 𝐷(𝒙, 𝒚) 

This seems strange, since natural landscape is not obviously periodic. However, Garlick et 

al., 2010 observed that  landscapes are often quasi-periodic in the small scale. In the 

landscape, there are repeating elements such as pinyon-juniper woodland, open meadow 

and grassland, not to mention the 30 m classification itself, both of which cause a specific 

peak on the power spectrum of 𝐷 at 
2𝜋

‖𝒑‖
 , leading to quasi-periodicity. 

The equation at 𝑂(1) becomes 

                                                         𝜕𝜏𝑃0 = ∇𝑦
2(𝐷𝑃0)                                                    (4.9)         

This equation is parabolic and its solution relaxes exponentially to the steady state on fast 

time scales. We therefore have  

∇𝑦
2(𝐷𝑃0) = 0. 
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The solution of this equation becomes 

𝐷𝑃0 = 𝑐0(𝒙, 𝑡) + 𝑐1(𝒙, 𝑡)𝑦1 + 𝑐2(𝒙, 𝑡)𝑦1, 

which is a linear equation. To satisfy the assumption of quasi-periodicity, the constants 𝑐1 

and 𝑐2 have to be zero. Thus, the solution becomes 

                                                           𝑃0 =
𝐶0(𝒙,𝑡)

𝐷(𝒙,𝒚)
 ,                                                       (4.10)       

where the constant 𝑐0 does not depend on the small scale 𝒚. 

At 𝑂(𝜀) equation (4.8) becomes 

                                         𝜕𝜏𝑃1 = ∇𝑦
2(𝐷𝑃1) +  2 ∇𝑥. ∇𝑦(𝐷𝑃0).                                    (4.11)         

the last term of equation (4.11)  vanishes using equation (4.10) and the fact that 𝑐0(𝒙, 𝑡) is 

independent of 𝒚 . Thus, 

                                                       𝜕𝜏𝑃1 = ∇𝑦
2(𝐷𝑃1).                                                   (4.12)          

This is again parabolic with exponentially decaying transients on short time scales. 

                                                         ∇𝑦
2(𝐷𝑃1) = 0.                                                      (4.13)               

Using quasi-periodicity on small scales as to receive equation (4.10), we find  

                                                           𝑃1 =
𝑑1(𝒙,𝑡)

𝐷(𝒙,𝒚)
 .                                                       (4.14)       

 At   𝑂(𝜀2) equation (4.8) becomes 

                    𝜕𝑡𝑃0 + 𝜕𝜏𝑃2 = ∇𝑦
2(𝐷𝑃2) + ∇𝑥

2(𝐷𝑃0) + 𝜆𝑃0 +  2 ∇𝑥. ∇𝑦(𝐷𝑃1).               (4.15)        

Plugging equation (4.14) in (4.15), the last term vanishes and in the steady state we have 

𝜕𝜏𝑃2 = 0. Then equation (4.15) becomes 

                                        𝜕𝑡𝑃0 = ∇𝑦
2(𝐷𝑃2) + ∇𝑥

2(𝐷𝑃0) − 𝜆𝑃0.                                    (4.16)         

From equation (4.10) and (4.16) we have 
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                               ∇𝑦
2(𝐷𝑃2) = 𝜕𝑡 (

𝐶0

𝐷
) + ∇𝑥

2(𝑐0) − 𝜆 (
𝐶0

𝐷
).                            (4.17)     

We take an average of each term of this equation over the small scale. Let us assume 

𝑙1 = 𝑛1𝑝1  and 𝑙2 = 𝑛2𝑝2 are the dimensions of each block of a big grid cell so that the 

area Ω = 𝑙1 × 𝑙2. Then the average of a function 𝑤(𝒚) over each block is defined as 

                                                〈𝑤〉 =
1

Ω
∫ ∫ 𝑤(𝒚) 𝑑𝒚

𝑙2

0

𝑙1

0
.                                             (4.18)      

Using the Divergence Theorem, the average of LHS of equation (4.17) gives 

                                    〈∇𝑦
2(𝐷𝑃2)〉 =

1

Ω 
 0

𝒏 . ∇𝑦(𝐷𝑃2) 𝑑𝑆𝑦 = 0,                               (4.19)      

where 𝒏 is  the  unit normal vector to the boundary Ω0 which integrates to zero because the 

flux of moving dispersers entering a block is equal to the number leaving from a block due 

to periodicity.   From equation (4.17) and (4.19) we now have 

                                           〈𝜕𝑡 (
𝐶0

𝐷
)〉 = 〈∇𝑥

2(𝑐0)〉 − 〈𝜆 (
𝐶0

𝐷
)〉,                                       (4.20)       

and simplifying, 

〈𝐷−1〉𝜕𝑡𝑐0 = ∇𝑥
2(𝑐0) + 〈𝜆/𝐷〉𝑐0. 

In terms of averaged quantities we write 

                    𝜕𝑡𝑐0 = 𝐷̅(𝒙)𝜕𝑥
2𝑐0 − 𝜆̅𝑐0,    𝑐0(𝒙, 𝒙

′, 0) = 𝐷(𝒙′, 0) 𝛿(𝒙 − 𝒙′),                (4.21)      

where 𝐷̅ =
1

⟨𝐷−1⟩
 ,the harmonic average of D, and 

𝜆̅(𝒙, 𝑡) = 𝐷̅〈𝜆 𝐷⁄ 〉 = 𝐷̅〈𝑈(𝒙)ℎ(𝑡) 𝐷(𝒙)⁄ 〉 = 𝐷̅ ℎ(𝑡)〈𝑈 𝐷⁄ 〉. 

Assuming 𝐷̅ is approximately constant, the solution of equation (4.21) is 

           𝑐0(𝒙, 𝒙
′, 𝑡) =

𝐷(𝒙′) 

4𝜋𝐷̅𝑡
 𝑒

−‖𝒙−𝒙′‖
2

4𝐷̅𝑡
−∫ 𝜆̅(𝒙,𝜏)𝑑𝜏

𝑡
0 = 

𝐷(𝒙′) 

4𝜋𝐷̅𝑡
 𝑒

−‖𝒙−𝒙′‖
2

4𝐷̅𝑡
−𝐷̅ 〈𝑈 𝐷⁄ 〉∫ ℎ(𝜏)𝑑𝜏

𝑡
0 .      (4.22)         

From equation (4.10) and (4.22) we get 
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                              𝑃(𝒙, 𝒙′, 𝑡) ≅
𝐷(𝒙′)

𝐷(𝒙) 4𝜋𝐷̅𝑡
 𝑒

−‖𝒙−𝒙′‖
2

4𝐷̅𝑡
−𝐷̅ 〈𝑈 𝐷⁄ 〉∫ ℎ(𝜏)𝑑𝜏

𝑡
0 ,                           (4.23)          

using this in (4.5) and integrating gives an approximate solution for 𝑆, 

          𝑆(𝒙, 𝒙′, 𝑡) ≅
𝐷(𝒙′) 

𝐷(𝒙) 𝐷̅
 〈𝑈(𝒙)〉 ∫ (

ℎ(𝑡′)

4𝜋𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒−𝐷̅ 〈𝑈(𝒙) 𝐷(𝒙)⁄ 〉 ∫ ℎ(𝜏)𝑑𝜏
𝑡′

0 )
𝑡

0
𝑑𝑡′.      (4.24)   

       

4.2.3 Homogenized solution for SDK 

The seed dispersal kernel is the long time limit of seed settling, which can be written 

𝐾0(𝒙, 𝒙
′) ≅ lim

𝑡→∞
 𝑆(𝒙, 𝒙′, 𝑡) 

=
𝐷(𝒙′) 

𝐷(𝒙) 𝐷̅
 〈𝑈(𝒙)〉 ∫ (

ℎ(𝑡′)

4𝜋𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒−𝐷̅ 〈𝑈(𝒙) 𝐷(𝒙)⁄ 〉 ∫ ℎ(𝜏)𝑑𝜏
𝑡′

0 )
∞

0
𝑑𝑡′. 

Let 〈𝑈(𝒙)〉 = 𝑈̅ (average utilization in a cell) and 〈𝑈(𝒙) 𝐷(𝒙)⁄ 〉 = 𝜏̂ (mean residence time 

in utilized habitat in a cell), then this equation becomes 

                 𝐾0(𝒙, 𝒙
′) ≅

𝐷(𝒙′) 

𝐷(𝒙) 

𝑈̅

 𝐷̅
∫ (

ℎ(𝑡′)

4𝜋𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒−𝐷̅𝜏̂ ∫ ℎ(𝜏)𝑑𝜏
𝑡′

0 )
∞

0
𝑑𝑡′.            (4.25)         

Further, extracting the temporal integral,  

                        𝐼(𝒙, 𝒙′) = ∫ (
ℎ(𝑡′)

4𝜋𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒− 𝐷̅𝜏̂ ∫ ℎ(𝜏)𝑑𝜏
𝑡′

0 )
∞

0
𝑑𝑡′,                   (4.26)         

equation (4.25) becomes 

                                       𝐾0(𝒙, 𝒙
′) ≅

𝐷(𝒙′) 

𝐷(𝒙) 
 
𝑈̅

 𝐷̅
 𝐼(𝒙, 𝒙′).                                    (4.27)        

We note that the kernel is not normalized. However, when we evaluate the seed dispersal 

probabilities on the big grid, normalization will be made numerically.  

 



81 

 

 

 

4.2.4 Connecting landscape and dispersal variables 

To connect the homogenized seed dispersal kernel with a landscape, we define 

small-grid variables which will be averaged up to inform dispersal probabilities on large 

types of grid. A classified landscape consist of different types of habitats (tree cover, 

grassland, barrier areas, cultivated or developed areas) resolved on the scale of the small 

grid cells (30 m). We denote these habitat types as 𝐻𝑘, 𝑘 = 1, 2, 3… . The characteristic 

function  𝜒𝑘(𝒙) ( 𝑘 = 1, 2, 3… ) is defined as having value one if 𝒙 belongs to the habitat 

type 𝐻𝑘 and it gives zero otherwise. Movement of birds or animals depends on existing 

habitat types. They forage differently in different areas. The motility in habitat type 𝑘 is 

defined as 

                                                        𝐷𝑘 =
1

𝜏𝑘
,                                                    (4.28)           

where 𝐷𝑘 is motility and 𝜏𝑘 is the residence time per area in habitat type 𝐻𝑘. Thus, motility 

is 

 

                                                  𝐷(𝒙) = ∑ 𝐷𝑘𝜒𝑘(𝒙)
𝐾
𝑘=1 ,                                              (4.29)    

where 𝐾 is the possible number of habitat types in the big-grid cell.  

There might be some types of habitat which birds or animals do not use for purposes 

of seed deposition. We denote a utilization index as 𝑈𝑘, 𝑘 = 1, 2, 3…, with 𝑈𝑘 = 1 if 

dispersers use habitat 𝐻𝑘, and 0 otherwise. Then the utilization function can be expressed 

as 

                                                   𝑈(𝒙) = ∑ 𝑈𝑘𝜒𝑘
𝑛
𝑘=1 ,                                                  (4.30)           

A list of variables and parameters with detail description is displayed in Table 4.1.         
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Table 4.1: Parameters and variables used in this paper. 

 

Notation Description 

𝒙′ Starting location of seed dispersal 

𝒙 Ending location of seed dispersal 

𝐾0(𝒙
′, 𝒙) Homogenized seed dispersal kernel, PDF of seed moving 𝒙′ → 𝒙 

𝐺0(𝒙
′, 𝒙) Homogenized Gaussian kernel, PDF of seed moving 𝒙′ → 𝒙 

𝐿0(𝒙
′, 𝒙) Homogenized Laplace kernel, PDF of seed moving 𝒙′ → 𝒙 

𝐶𝑖,𝑗 Initial big grid cell with starting location of seed dispersal 

𝐶𝑚,𝑛 Targeted big grid cell with ending location of seed dispersal 

Ω Area of each block in a big grid cell 

Ω0 Boundary of each block in the targeted  big grid 

𝐻𝑘 Habitat types, 𝑘 = 1,2,3… up to the number of existing habitats 

𝑈𝑘 Utilization index, 𝑘 = 1,2,3… index (0 or 1) of habitat type 𝐻𝑘  

𝜒𝑘 
Characteristic function, 𝑘 = 1,2,3… up to the number of existing 

habitats inside the big grid 

𝐷𝑘 
Motility in habitat type 𝐻𝑘, 𝑘 = 1,2,3… up to the number of existing 

habitats 

𝜏𝑘 
Residence time per area in habitat type 𝐻𝑘, 𝑖 = 1,2,3… up to the 

number of habitats used 

𝐹𝑖,𝑗
𝑘  Fraction cover, 𝑘 = 1,2,3… up to the number of existing habitats 

𝐷̅𝑖,𝑗 Harmonic average of 𝐷 

𝑏̃ Mean seed digestion scaling parameter 

𝜎 = √2 𝐷̅𝑏̃, the variance of homogenized dispersal kernel  

𝑃̂𝑖,𝑗(𝑚, 𝑛) Probability weights of dispersal before normalization 

𝑃𝑖,𝑗(𝑚, 𝑛) Probability of dispersal from big grid cell i, j to cell m, n 
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4.3 Dispersal probabilities on the big grid  

We use continuous dispersal, represented by as the homogenized SDK (equation 4.27), to 

resolve discrete probabilities from one big-grid cell to other big-grid cells. Let us assume 

𝐶𝑚,𝑛 denotes the targeted big-grid cell and 𝐶𝑖,𝑗 denotes the big-grid cell from where 

dispersal begins. We evaluate all of the averaged quantities on individual grid cells. The 

homogenized averaged quantities: motility, utilization index and residence time are 

respectively denoted by 𝐷̅𝑚,𝑛, 𝑈̅𝑚,𝑛 and 𝜏̂𝑚,𝑛. These quantities are evaluated in the big-grid 

cell 𝐶𝑛,𝑚. The dispersal probability weights from a starting location 𝒙′ ∈ 𝐶𝑖,𝑗 to some 

ending location 𝒙 ∈ 𝐶𝑛,𝑚 we define as 

                                           𝑃̂𝑖,𝑗(𝑚, 𝑛) = 
nmC ,

𝐾0(𝒙, 𝒙
′) 𝑑𝒙,                                        (4.31)      

From equation (4.27) and (4.31) we have 

                    𝑃̂𝑖,𝑗(𝑚, 𝑛) =
𝐷(𝒙′) 𝑈̅𝑚,𝑛

𝐷̅𝑚,𝑛


nmC ,

[
1

𝐷(𝑥)
 𝐼(𝒙′ = 𝒙𝒊,𝒋, 𝒙 = 𝒙𝒎,𝒏)] 𝑑𝒙,                (4.32)      

Note that the motility 𝐷(𝒙) and residence time per area 𝜏(𝒙) are inversely related, 

                                                           𝜏(𝒙) ≈
1

𝐷(𝒙)
 ,                                                      (4.33)          

and residence time per area can be written in the form 

                                                  𝜏(𝒙) = ∑ 𝜏𝑘𝜒𝑘(𝒙)
𝐾
𝑘=1 ,                                               (4.34)       

where 𝐾 is the number of existing habitat type. Thus, from equations (4.32), (4.33) and 

(4.34) gives 
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           𝑃̂𝑖,𝑗(𝑚, 𝑛) ≈
𝐷(𝒙′) 𝑈̅𝑚,𝑛

𝐷̅𝑚.𝑛


nmC ,

[(∑ 𝜏𝑘𝜒𝑘(𝑥)
𝐾
𝑘=1 ) 𝐼(𝒙′ = 𝒙𝒊,𝒋, 𝒙 = 𝒙𝒎,𝒏) ]𝑑𝒙.       (4.35)             

The fraction cover of habitat type 𝑘 in large grid cell 𝐶𝑚,𝑛 is defined as 

                                                 𝐹𝑚,𝑛
𝑘 =

1

Ω 
nmC ,

𝜒𝑘(𝒙) 𝑑𝒙,                                             (4.36)       

Notice that the integrand in 𝐼(𝒙, 𝒙′) depends only on large scale averages. So 𝐼(𝒙, 𝒙′) is 

approximately constant in small cells. We therefore factor the integral in (4.35) as 

                 𝑃̂𝑖,𝑗(𝑚, 𝑛) ≈
𝐷(𝒙′) 𝑈̅𝑚,𝑛

𝐷̅𝑚.𝑛
 𝐼(𝒙′ = 𝒙𝒊,𝒋, 𝒙 = 𝒙𝒎,𝒏)[∑ Ω 𝜏𝑘 𝐹𝑚,𝑛

𝑘𝑝
𝑘=1 ],              (4.37)        

And using  ∑𝜏𝑘 𝐹𝑚,𝑛
𝑘 =

1

𝐷̅𝑚.𝑛
 is true, so equation (4.37) becomes 

                        𝑃̂𝑖,𝑗(𝑚, 𝑛) ≈
𝐷(𝒙′) 𝑈̅𝑚,𝑛

𝐷̅𝑚,𝑛
2  𝐼(𝒙′ = 𝒙𝒊,𝒋, 𝒙 = 𝒙𝒎,𝒏) Ω.                    (4.38)       

We must now normalize the 𝑃̂𝑖,𝑗(𝑚, 𝑛) to create dispersal probabilities. The mean 

variance of seeds during dispersal is 𝜎 = √2𝐷̅𝑏̃, where 𝑏̃ is the modal (peak) handling 

time. Approximately 99.7% of dispersed seeds fall within 3𝜎 of their starting location for 

a Gaussian distribution (Casella and Berger, 2001). Outside this boundary seed dispersal 

is negligible. We therefore calculate the total weights of probabilistic dispersal in a 3𝜎 

region 

                                         𝜋𝑚,𝑛 = ∑ 𝑃̂𝑖,𝑗𝑚−𝑚̂≤ 𝑝 ≤ 𝑚+𝑚̂
𝑛−𝑛̂<𝑞<𝑛+𝑛̂ 

(𝑚, 𝑛),                                     (4.39)         

where  𝑚̂ = 𝑛̂ = ⌈3𝜎⌉, the first integer ≥ 3𝜎. The probability of dispersing seeds from one 

big grid cell with location (𝑖, 𝑗) to the another big grid cell with location (𝑚, 𝑛) is then 

                                                  𝑃𝑖,𝑗(𝑚, 𝑛) =
1

𝜋𝑚,𝑛
 𝑃̂𝑖,𝑗(𝑚, 𝑛).                                      (4.40)        



85 

 

 

 

4.4 Examples 

There are pre-existing dispersal kernels corresponding to two differing limits of 

handling time, namely Gaussian and Laplace kernels. We next write homogenized form of 

each kernel and compare dispersal probabilities. 

 

4.4.1 Dispersal probabilities associated with Gaussian kernel 

Seed handling function ℎ(𝑡) when there is no handling time variability can be 

written (Neupane and Powell, 2015) as  

                                                ℎ(𝑡) = 𝛿(𝑡 − 𝑏̃ ),                                             (4.41)        

where 𝑏̃ is a the seed handling time scaling parameter. In this limit equation (4.29) gives 

             𝐺0(𝒙, 𝒙
′) =

𝐷(𝒙′) 

𝐷(𝒙) 

𝑈̅

 𝐷̅
∫ (

𝛿(𝑡−𝑏)

4𝜋𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒−𝐷̅𝜏̂ ∫ 𝛿(𝜏−𝑏̃) 𝑑𝜏
𝑡′

0 )
∞

0
𝑑𝑡′.         (4.42)    

Integrating, 

                                   𝐺0(𝒙, 𝒙
′) =

𝐷(𝒙′) 

𝐷(𝒙)  
 
𝑈̅ 

4𝜋𝐷̅𝑏̃
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑏̃  𝑒−𝐷̅𝜏̂,                          (4.43)            

Following the procedure as in equation (4.39), the weighted dispersal probability becomes 

                            𝑃̂𝑖,𝑗(𝑚, 𝑛) =
𝐷(𝒙′) 𝑈̅𝑚,𝑛

4𝜋 𝐷̅𝑚,𝑛
2  𝑏̃

 𝑒
−‖𝒙𝑚,𝑛−𝒙𝑖.𝑗‖

2

4𝐷̅𝑏̃
−𝐷̅𝑚,𝑛 𝜏̂𝑚,𝑛 .                   (4.44)     

4.4.2 Dispersal probabilities associated with Laplace kernel 

  For maximum variability on seed handling time, i.e. a uniform distribution, the 

function ℎ(𝑡) is taken (Neupane and Powell, 2015) as  

                                                      ℎ(𝑡) =
1

2𝑏̃
,                                                   (4.45)        

where 𝑏̃ is a the seed handling time scaling parameter. Then equation (4.29) becomes 
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                  𝐿0(𝒙, 𝒙
′) =

𝐷(𝒙′) 

𝐷(𝒙) 

𝑈̅

 𝐷̅
∫ (

1

2𝑏̃

4𝜋𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒
−𝐷̅𝜏̂ ∫

1

2𝑏̃
 𝑑𝜏

𝑡′

0 )
∞

0
𝑑𝑡′.              (4.46)        

Rearranging terms from this equation gives, 

𝐿0(𝒙, 𝒙
′) =

𝐷(𝒙′) 

𝐷(𝒙) 

𝑈̅

𝐷̅𝜏̂
 ∫ (

𝐷̅𝜏̂

2𝑏̃

1

4𝜋𝐷̅𝑡′
𝑒
−‖𝒙−𝒙′‖

2

4𝐷̅𝑡′  𝑒
−𝐷̅𝜏̂ 

𝑡′

2𝑏̃)
∞

0
𝑑𝑡′, 

which can be integrated in terms of Bessel function,  

𝐿0(𝒙, 𝒙
′) =

𝐷(𝒙′) 

𝐷(𝒙) 

𝑈̅

𝐷̅𝜏̂
 

𝑌0

[
 
 
 
 
‖𝒙−𝒙′‖

√2𝐷̅𝑏̃
𝐷̅𝜏̂ ]

 
 
 
 

4𝜋𝐷̅𝑏̃

𝐷̅𝜏̂

, 

where 𝑌0 is a modified Bessel’s function of the second kind, zeroth order. Simplifying, 

                             𝐿0(𝒙, 𝒙
′) =

𝐷(𝒙′) 

𝐷(𝒙) 

𝑈

4𝜋𝐷̅𝑏̃
 𝑌0 (√

𝜏̂

2𝑏̃
‖𝒙 − 𝒙′‖).                        (4.47)       

Again, following the procedure as in equation (4.39), the weighted dispersal probability 

becomes 

                          𝑃̂𝑖,𝑗(𝑚, 𝑛) =
𝐷(𝒙′) 𝑈̅𝑚,𝑛

4𝜋𝑏̃ 𝐷̅𝑚,𝑛
2  𝑌0 (√

𝜏̂

2𝑏̃
‖𝒙𝒎,𝒏 − 𝒙𝒊,𝒋‖)                     (4.48)            

  

4.4.3 Comparing dispersal on artificially structured random landscapes         

To compare dispersal probabilities corresponding to three dispersal kernels namely 

Gaussian, seed digestion and Laplace, we artificially generate three different landscapes. 

In the simulation, we generate a 512 by 512 random matrix 𝐵 with numbers between zero 

and one using a randomly-phased Fourier field with power spectrum decaying as  ‖𝑘‖−
𝐻+1

2 , 

where 𝑘 is the wave number vector.  This generates a fractal landscape of dimension 2-H.    
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Figure 4.1 Dispersal probabilities in an uncorrelated landscape (𝐻 = 0.25), using 𝑏 =
52.5 min and 𝐷𝑚𝑎𝑥 = 0.225 km

2/min to model dispersal of pinyon seeds by jays. Green 

dots indicate the boundaries of big-grid cells. Each big-grid cell is in sized  0.96 km2 and 

it is divided into 1024 small grid cells of size 900 m2.  White portion in the left top square 

demonstrates possible seeds caching or dropping area. Other three squares show the color 

maps of probability of dispersal from the central grid cell (indicated by green circle) to 

surrounding cells corresponding to Gaussian, SDK and Laplace kernels using a ‘hot’ color 

map, the brightest color indicates the most seeds dispersed locations. 

 

A matrix of motility values is created using 𝐷 = 0.225 km2/min × 𝐵. A utilization 

matrix, 𝑈, is generated from 𝐵 by setting U=1 where B< 0.1 . These numbers are chosen 

to model pinyon jay, which can forage with maximum motility 𝐷 = 0.225 km2/min and 

the mode seed handling time 𝑏 = 52.5 min (Neupane and Powell, 2015).   Three different 

landscape structures, using 𝐻 = 0.25  (very uncorrelated, Figure 4.1), 𝐻 = 0.5 (Figure 4.2)  
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Figure 4.2 Dispersal probabilities in a moderately correlated landscape (𝐻 = 0.5), using 

𝑏 = 52.5 min and 𝐷𝑚𝑎𝑥 = 0.225 km
2/min to model dispersal of pinyon seeds by jays. 

Green dots indicate the boundaries of big-grid cells. Each big-grid cell is in sized  0.96 km2 

and it is divided into 1024 small grid cells of size 900 m2.  White portion in the left top 

square demonstrates possible seeds caching or dropping area. Other three squares show the 

color maps of probability of dispersal from the central grid cell (indicated by green circle) 

to surrounding cells corresponding to Gaussian, SDK and Laplace kernels using a ‘hot’ 

color map, the brightest color indicates the most seeds dispersed locations. 

 

and 𝐻 = 0.75 (highly correlated, Figure 4.3) are considered. We assume that each big-

grid cell is in sized  0.96 km2 and it is divided into 32×32 small 30 meter grid cells. 

Dispersal probabilities associated with Gaussian, SDK and Laplace kernels are displayed 

and compared for each landscape. 
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Figure 4.3 Dispersal probabilities in a correlated landscape (𝐻 = 0.75), using 𝑏 = 52.5 

min and 𝐷𝑚𝑎𝑥 = 0.225 km
2/min to model dispersal of pinyon seeds by pinyon jays. 

Green dots indicate the boundaries of big-grid cells. Each big-grid cell is in sized  0.96 km2 

and it is divided into 1024 small grid cells of size 900 m2.  White portion in the left top 

square demonstrates possible seeds caching or dropping area. Other three squares show the 

color maps of probability of dispersal from the central grid cell (indicated by green circle) 

to surrounding cells corresponding to Gaussian, SDK and Laplace kernels using a ‘hot’ 

color map, the brightest color indicates the most seeds dispersed locations.    

 

 

After comparing the dispersal probabilities associated with three kernels in Figure 

4.1 Figure 4.2 and Figure 4.3, we found that seeds are dispersed to the furthest for the 

Laplace, and the least spread for the Gaussian. Seed dispersal with seed digestion kernel is 

bounded by the other two. The dispersal under seed digestion looks closer to Gaussian than  
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Figure 4.4 The landscape was generated using real data from Colorado Plateau with 𝑏 =
52.5 min and 𝐷𝑚𝑎𝑥 = 0.225 km

2/min to model dispersal of pinyon seeds by pinyon jays. 

Both green area (pine cover types) and black area denote the low motility with high 

utilization locations. Locations with orange color indicate the high motility areas (sand, 

dirt, farmland urban and water). The dark-brown colored locations are the intermediate 

motility areas. 

 

the dispersal associated with Laplace. We also found that the high probabilities of dispersal 

occur when the targeted grid cell has a high fraction of utilization and low 𝐷̅, which means 

that birds spend a lot of time there and can find a lot of places to cache seeds, which is 

reasonable since residence time and motility are inversely related.  Furthermore, the kernel 

realistically ‘jumps over’ cells with low average utilization, as one would expect in nature. 
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Figure 4.5 The harmonic average motility is received using 𝐷𝑚𝑎𝑥 = 0.225 km

2/min and 

𝑏 = 52.5 min to model dispersal of pinyon seeds by pinyon jays. The green area denotes 

the pine cover types and the darkest area indicates the lowest motility locations. There is 

low motility in the locations densely occupied with pine trees. On the other hand, there is 

high motility to the mid-east and south-east locations with no trees at all. 

 

 

4.4.4 Pinyon juniper dispersal in real landscape 

To estimate the probability of dispersal of pinyon and juniper, we use real landscape data. 

In the simulation, the matrix of pinyon and juniper landscape class, utilization index for 

seed caching and motility are generated using real data. Probability of dispersal of pinyon-
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juniper is estimated for pinyon jay which can forage with maximum motility 𝐷 =

0.225 km2/min and the mode seed handling time 𝑏 = 52.5 min (Neupane and Powell, 

2015). We assume that each big-grid cell is in sized  0.99 km2 and it is divided into 33×33 

 
Figure 4.6 The landscape utilization is received using 𝐷𝑚𝑎𝑥 = 0.225 km

2/min and 𝑏 =
52.5 min to model dispersal of pinyon seeds by pinyon jays. The green area denotes the 

pine cover types, the red area indicates the seed caching area (𝑈 = 1) and the blue area 

denotes no seed caching area (𝑈 = 0). The graph shows that seed caching locations are 

not evenly dispersed and are clumped in the southwest. 

 

small 30 meter grid cells. This landscape was generated by real data from Colorado 

Plateau displayed in figure 4.4. In this figure, pine cover types are high utilization areas 
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and low motility locations. The locations covered by sand, dirt, farmland, urban and 

water are in high motility areas. The harmonic average motility is shown in figure 4.5. It 

shows that there exists high motility in the dense pine cover types. The potential seed 

 

 
Figure 4.7 Dispersal probabilities are shown using 𝐷𝑚𝑎𝑥 = 0.225 km

2/min and 𝑏 = 52.5 

min to model dispersal of pinyon seeds by pinyon jays. The green area denotes the locations 

where actual pinyon pines are. The darker the red color, the higher pinyon-juniper 

dispersal. The location with darkest blue color gives the lowest density of dispersal. The 

color bar to the right shows label of dispersal density. The high density of dispersal occurs 

near the pinyon-juniper landscape.  
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 caching areas are displayed in figure 4.6. These areas are not evenly dispersed and are 

clumped in the southwest locations. Probabilities of dispersal of pinyon-juniper are shown 

in figure 4.7. We found that high density of dispersal occurs near the pinyon-juniper 

woodland and there exists some favorable caching area with no densely occupied trees. 

The motility 𝐷 varies along with the habitat variation. For instance, it is low in the pinyon-

juniper woodland and it is high in sand, dirt, farmland, urban and water. Results from figure 

4.7 shows that seed spread originates around the location of adult trees habitat except on 

the boundaries.   

 

4.5 Conclusion 

 

 We modified the pre-exiting seed dispersal model by introducing ecological 

diffusion, seed handling times, landscape utilization and space-dependent motility 

associated with frugivorous birds in the model. Method of homogenization was used for 

solving the model with the assumption that habitats vary in short scales (30 meters) but 

dispersal is to be resolved on kilometers. The dispersal kernel received from the solution 

reflects small scale variability and animals’ utilization. This dispersal kernel is connected 

to discrete scale dispersal by integrating over large cells, estimating dispersal probabilities 

that depend on residence time spent and utilization in different cover types by frugivorous 

birds. Consequently, homogenized seed dispersal kernel can be applied to estimate fruiting 

tree distribution from one big-grid cell to the next cell in terms of large-scale variables. 

Comparing with dispersal probabilities associated with three dispersal kernels: Gaussian, 

seed digestion and Laplace, we found that seeds are dispersed to the furthest for the 

Laplace, and the least spread for the Gaussian. Seed dispersal with seed digestion kernel is 
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bounded by the other two. This result is consistent with the result of seed invasion based 

on homogenous landscape in chapter 2 and seed invasion in the heterogeneous landscape 

in chapter 3.     

In this chapter we have estimated large scale dispersal probabilities associated with 

animals’ utilization of landscape and their space-dependent motility.  The homogenization 

technique is to be used to solve this model assuming that habitat variability is reflected on 

30m scales but dispersal is to be resolved on kilometer-scale grids.  
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CHAPTER 5 

CONCLUSION 

In this dissertation we consider the active seed dispersal of fruiting trees on 

homogeneous as well as heterogeneous landscapes. The work is largely inspired by the 

problem of pinyon and juniper dispersal in the American southwest.  Due to concerns about 

changing climate, we construct mathematical tools to help address the following research 

questions: (i) Can either pinyon or juniper disperse far enough northward to colonize the 

new habitat created by climate change? (ii) How rapidly may we expect P-J forest 

boundaries to move?  

We introduced a PDF of seed-handling to reflect the effects of digestion/caching 

on dispersal of pinyon and juniper seeds. We connected this distribution to hazard functions 

or failure rates in an existing random-walk dispersal model to determine a seed digestion 

kernel modeling the probable location of seeds after active dispersal.  As expected, if birds 

or animals take more time to handle seeds, those seeds are dispersed further away from the 

source tree.  

To evaluate migration potential for pinyon and juniper we introduced an IDE model 

with competition among seedlings, which is appropriate for desert-adapted trees in the 

xeric environment of the American Southwest.  The SDK was compared with well-known 

Laplace and Gaussian kernels (L(x) and G(x)). After standardizing the associated PDFs for 

handling time, the speed of invasion for the SDK was the fastest for shorter handling times 

(rapidly digesting seeds).  As handling times increased, however, the speeds for the SDK 

fell between the Laplace kernels (faster; based on an assumption of constant seed 
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deposition) and the Gaussian kernels (slower; based on the assumption of instantaneous 

seed deposition), as would be expected from the relative behavior of the tails. 

Using the SDK and median parameter values estimated from the literature it turned 

out that pinyon has migration potential at least two orders of magnitude larger than juniper 

due to avian dispersal.  Along with changing temperatures and diminishing moisture levels 

the favorable environment for P-J is moving northwards through Utah.  Over time, these 

trees will not be able to survive in the southern limits of their current habitat. The large 

migration potential of pinyon means that it is most likely to occupy new habitats opening 

to the north. 

Introducing ecological diffusion (disperser motility depends on habitat type alone) 

in the dispersal model is the next step of this dissertation. We use multiple scales approach 

to resolve the effect of rapidly varying habitats and solve the dispersal model using the 

method of homogenization. The resulting homogenized seed digestion kernel has 

asymptotically correct large scale isotropic structure conditioned by the harmonic average 

motility (𝐷̅) and appropriate anisotropic small scale variation for seed dispersal reflecting 

highly variable habitat. 

We have also used the homogenized dispersal kernels to calculate rates of invasion 

in variable landscapes. No general results exist for predicting a priori spread rates of adult 

plants in such landscape.  However, we observe that the homogenized kernels have 

isotropic large-scale structure, conditioned on the small scale only through the 

harmonically averaged motility.  Using existing theory for predicting spread rates for 

isotropic dispersal kernels we predict rates of invasion in the IDE model using 𝐷̅ and 
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compare with simulated invasions for the IDE and spatially complicated dispersal.  Our 

results show that the a priori predictions using 𝐷̅ accurately predict observed invasions, 

and a convergence study shows the simulated speed converges from below to the constant 

predicted speed asymptotically. This represents a second novel contribution; rates of 

invasion can now be predicted in arbitrary, rapidly-varying environments. 

We modified the pre-exiting seed dispersal model by introducing ecological 

diffusion, seed handling times, landscape utilization and space-dependent motility 

associated with frugivorous birds in the model. Method of homogenization was used for 

solving the model with the assumption that habitats vary in short scales (30 meters) but 

dispersal is to be resolved on kilometers. The dispersal kernel received from the solution 

reflects small scale variability and animals’ utilization. It is possible to express dispersal 

probabilities using this kernel. These probabilities were factored in terms of pre-defined 

variables such as fraction covers and other existing variables in the big-grid cell. These 

variables are determined from regional scale tree distribution models.  Consequently, 

homogenized seed dispersal kernel can be applied to estimate fruiting tree distribution from 

one big-grid cell to the next cell in terms of large-scale variables. 

Comparing with dispersal probabilities associated with the three dispersal kernels: 

Gaussian, seed digestion and Laplace, we found that seeds are dispersed to the furthest for 

the Laplace, and the least spread for the Gaussian. Seed dispersal with seed digestion kernel 

is bounded by the other two. The dispersal under seed digestion looks closer to Gaussian 

than the dispersal associated with Laplace.  
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Overall, the most significant aspect of this work is the development of a 

methodology for active seed dispersal in variable landscapes and implantation of this 

modeling idea in ecology. Ecologists commonly frame different environmental scenarios 

within a big (1-10 km) grid in order to estimate future distributions of species. Most plants 

and animals are migrating at some level; even trees can be found at some locations where 

they were not found before. In the modern era there is large and growing amount of data 

(telemetry data, presence absence data) about landscape and animal movement easily 

available. It is possible to know about what lives in every square kilometer in North 

America, as well as soil types soil moisture, elevation and aspect. Current distribution 

models basically determine whether offspring could survive in new habitat, whereas our 

approach allows researchers to determine if dispersal to new habitat is feasible. In principal, 

the ingredients for using our model are getting easier and easier to find relative invasion of 

species. 

Our model was developed for seed dispersal by vertebrates. There exists some 

correlation between animal movement and different habitat types. The lower the habitat 

utilization, the higher the possible diffusion associated with these animals.  This model can 

also be applied for non-vertebrate dispersal, for instance seed dispersal by wind. Wind is 

not constant everywhere. In cover with trees and bushes, wind gets stopped and wind blows 

less rapidly. Consequently, seeds are densely deposited in these locations while seeds move 

faster in the places where there is dirt, water and open spaces. Additionally, seed deposition 

varies in space, generally increasing where wind decreases. The diffusion is higher in the 

place where seed deposition is lower and vice-versa. 
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The model is not limited to only seed dispersal. There are other direct application 

areas. In North America, ladybirds beetles (Coccinellids) have been used for pest control 

(Snyder et al., 2004, Koch and Galvan 2007). These beetles disperse, lay eggs and eggs 

hatch into larvae, which eat pasts. Ladybird beetles do not lay eggs randomly. They lay 

eggs in places (green crops as opposed to stubble or bare dirt) where there are more likely 

to be pests. People wonder about where eggs would end up after release by ladybird beetles 

in some particular location. These scenarios fit perfectly well in our modeling framework. 

Both animal movement and habitat variation are sensitive to climate change in 

some geographical region. Because of the climate change, moisture is changing, some 

habitats are closing in some places and some habitats are opening up some new locations. 

The effect of climate change creates a couple of general questions.  Can species move 

through the variable landscapes to get these habitats? Will these species be able to establish 

there? Will exotic species spread and establish? Even if we were tried to answer these 

question for particular species like pinyon and juniper, we need to work more broadly in 

the context of varieties of other species. Our modeling framework applies to many species 

and we see many possible extensions in the future.  
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Appendix A: Finite Difference Approximation 

 

We will use two techniques to solve the dispersal model given by equations (2.1) and 

(2.2) with corresponding seed digestion rate given by the equation (2.3). First, we will solve 

this PDE numerically using finite difference approximations  
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j  . We discretize the space derivative with respect to the 

variable x  using a second order centered finite difference, 
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Using these discretizations and approximating )()0,( xtxP   using a standard normal 

density, 
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with variance   chosen to be very small, the system (2.1) and (2.2) can be solved 

numerically provided Δ𝑡 ≤
1

2
Δ𝑥2 to ensure numerical stability (Ascher and Greif 2011).  
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Appendix B: Error calculation for seed digestion kernel with step function 𝒉(𝒕) 

 The Laplace kernel used for comparison in the main text arises from solving 

equations (2.1) and (2.2) with a constant hazard function 
~

2

1
)(

b

th   . However, since the 

constant function is not a PDF we must compare the Laplace kernel with the seed digestion 

kernel with step function h(t) defined in equation (2.11), which was standardized for 

comparison. In this appendix, we analyze the difference between the Laplace kernel, used 

as the approximation of the systems (2.1) and (2.2) with a step function failure rate 

~

2

1
)(

b

th   , and the actual solution.   

 To calculate the difference between the Laplace and actual kernels, we first find the 

error in 𝑃 and use it to calculate the error in 𝑆 from the models (2.1) and (2.2). We denote 

the actual solution for 𝑃 (with stepped hazard function) as actP  and the approximate solution 

(with constant hazard function) for  𝑃  as
appxP . Similarly, the actual and approximate 

solutions for 𝑆 are  actS  and 
appxS  respectively. Notice that both solutions for 𝑃 are equal 

when tb 
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2  and are different when
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When 
~

2bt   and 0)( th , we have 
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When 
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Figure B.1 Comparison of the Laplace kernel (solid line) and seed digestion kernel with 

step function )(th  (dash-dot line). The error is the difference between the two graphs. 

 

The error in 𝑃 as
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Thus, the error in 𝑆  is        
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Figure B.2 Calculation of the pointwise error generated using Laplace kernel 

approximation. The error is high near the center and it is decreasing towards both tails, but 

is always < 10% of the calculated dispersal kernel. 

 

Finally we must calculate the error in the kernel (𝐾𝑒𝑟𝑟𝑜𝑟) which can be obtained by using 

the limit t   in equation (7.9). Form equations (7.7) and (7.9) we then have 

                       𝐾𝑒𝑟𝑟𝑜𝑟 = lim
𝑡→∞

𝑆(𝑥, 𝑡)𝑒𝑟𝑟𝑜𝑟 = lim
𝑡→∞

1

2𝑏̃
∫

1

√4𝜋𝐷𝜏
𝑒
−𝑥2

4𝐷𝜏
−
𝜏

2𝑏̃
𝑡

2𝑏̃
𝑑𝜏.                    (7.10)          



112 

 

 

 

 We use the trapezoid rule to approximate the integral and note that we have not 

chosen scalings of time and space, so without loss of generality 𝐷 = 1, 𝑏 = 20.  In a 

spatial domain -30 < x <30 the estimated   𝑙1 and 𝑙2 errors are 0.0026 and 0.00052. The 

two seed dispersal kernels (the Laplace kernel with constant h(t) and seed digestion kernel 

with step function h(t)) appear in Figure B.1. Pointwise errors are depicted in Figure B.2.      
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